Спін

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці

Спін (ад англ.: spin — круціць, кручэнне) — уласны момант імпульсу элементарных часціц, які мае квантавую прыроду і не злучаны з перамяшчэннем часціцы як цэлага. Спінам называюць таксама ўласны момант імпульсу атамнага ядра ці атама; у гэтым выпадку спін вызначаецца як вектарная сума (вылічаная па правілах складання момантаў у квантавай механіцы) спінаў элементарных часціц, якія ўтвараюць сістэму, і арбітальных момантаў гэтых часціц, абумоўленых іх рухам ўнутры сістэмы.

Спін вымяраецца ў адзінках ħ (прыведзенай пастаяннай Планка, або пастаяннай Дзірака) і роўны \hbar J,, дзе J — характэрнае для кожнага гатунку часціц цэлы (у тым ліку нулявой) або паўцелы дадатны лік — так званы спінавы квантавы лік, які звычайна называюць проста спінам (адзін з квантавых лікаў).

У сувязі з гэтым кажуць аб цэлым або паўцелым спіне часціцы.

Існаванне спіна ў сістэме тоесных часціц, што ўзаемадзейнічаюць, з'яўляецца прычынай новага квантавамеханічнай з'явы, якая не мае аналогіі ў класічнай механіцы: абменнага ўзаемадзеяння.

Уласцівасці спіна[правіць | правіць зыходнік]

Любая часціца можа валодаць двума відамі вуглавога моманту: арбітальным арбітальным момантам і спінам .

У адрозненне ад арбітальнага вуглавога моманту, які спараджаецца рухам часціцы ў прасторы, спін не звязаны з рухам ў прасторы. Спін — гэта ўнутраная, выключна квантавая характарыстыка, якую нельга растлумачыць у рамках рэлятывісцкай механікі. Калі прадстаўляць часціцу (напрыклад, электрон) як шарык, што верціцца, а спін як момант, звязаны з гэтым кручэннем, то аказваецца, што папярочная хуткасць руху абалонкі часціцы павінна быць вышэй хуткасці святла, што недапушчальна з пазіцыі рэлятывізму.

Будучы адной з праяў вуглавога моманту, спін ў квантавай механіцы апісваецца вектарным аператарам спіна \hat{\vec{s}},, алгебра кампанент якога цалкам супадае з алгебрай аператараў арбітальнага вуглавога моманту \hat{\vec{\ell}}.. Аднак, у адрозненне ад арбітальнага вуглавога моманту, аператар спіна не выяўляецца праз класічныя зменныя, іншымі словамі, гэта толькі квантавая велічыня. Следствам гэтага з'яўляецца той факт, што спін (і яго праекцыі на якую-небудзь вось) можа прымаць не толькі цэлыя, але і паўцелыя значэнні (у адзінках пастаяннай Дзірака ħ).

Прыклады[правіць | правіць зыходнік]

Ніжэй паказаныя спіны некаторых мікрачасцінак.

спін агульная назва часціц прыклады
0 скалярныя часціцы π-мезоны, K-мезоны, хігсаўскі базон, атамы і ядра 4He, цотна-няцотныя ядра, парапазітроній
1/2 спінарныя часціцы электрон, кваркі, мюон, тау-лептон, нейтрына, пратон, нейтрон, атамы і ядра 3He
1 вектарныя часціцы фатон, глюон, W- і Z-базоны, вектарныя мезоны, ортапазітроній
3/2 спін-вектарныя часціцы Ω-гіперон, Δ-рэзанансы, гравіціна
2 тэнзарныя часціцы гравітон, тэнзарные мезоны

На ліпень 2004 года, максімальным спінам сярод вядомых барыёнаў валодае барыённы рэзананс Δ(2950) са спінам 152. Спін ядраў можа перавышаць 20\hbar..

Гісторыя[правіць | правіць зыходнік]

У 1921 вопыт Штэрна — Герлаха пацвердзіў наяўнасць у атамаў спіна і факт прасторавага квантавання напрамку іх магнітных момантаў.

У 1924 годзе, яшчэ да дакладнай фармулёўкі квантавай механікі, Вольфганг Паўлі уводзіць новую, двухкампанентную ўнутраную ступень свабоды для апісання валентных электронаў ў шчолачных металах. У 1927 годзе ён жа мадыфікуе нядаўна адкрытае ураўненне Шродзінгера для ўліку спінавай зменнай. Мадыфікаванае такім чынам ураўненне носіць цяпер назву ураўненне Паўлі. Пры такім апісанні ў электрона з'яўляецца новая спінавая частка хвалевай функцыі, якая апісваецца спінарам — «вектарам» ў абстрактнай (гэта значыць не звязаным прама з звычайным) двухмернай спінавай прасторы.

У 1928 годзе Поль Дзірак будуе рэлятывісцкую тэорыю спіна і ўводзіць ўжо чатырохкампанентную велічыню — біспінар.

Матэматычна тэорыя спіна апынулася вельмі празрыстай, і ў далейшым па аналогіі з ёй была пабудаваная тэорыя ізаспіна.

Спін і магнітны момант[правіць | правіць зыходнік]

Нягледзячы на тое, што спін не звязаны з рэальным кручэннем часціцы, ён тым не менш спараджае пэўны магнітны момант, а значыць, прыводзіць да дадатковага (у параўнанні з класічнай электрадынамікай) ўзаемадзеяння з магнітным полем. Стаўленне велічыні магнітнага моманту да велічыні спіна называецца гірамагнітным стаўленнем, і, у адрозненне ад арбітальнага вуглавога моманту, яно не роўнае магнетону (\! \mu_0):

\hat{\vec{\mu}} = g\cdot  \mu_0 \hat{\vec{s}}.

Уведзены тут множнік g называецца g-фактарам часціцы; значэнні гэтага g-фактару для розных элементарных часціц актыўна даследуюцца ў фізіцы элементарных часціц.

Спін і статыстыка[правіць | правіць зыходнік]

З прычыны таго, што ўсе элементарныя часціцы аднаго і таго ж гатунку тоесныя, хвалевая функцыя сістэмы з некалькіх аднолькавых часціц павінна быць альбо сіметрычнай (гэта значыць не змяняецца), альбо антысіметрычнай (дамнажаецця на -1) адносна перастаноўкі месцамі двух любых часціц. У першым выпадку кажуць, што часціцы падпарадкоўваюцца статыстыцы Бозэ — Эйнштэйна і называюцца базонамі. У другім выпадку часціцы апісваюцца статыстыкай Фермі — Дзірака і называюцца ферміёнамі.

Аказваецца, што іменна значэнне спіна часціцы кажа пра тое, якія будуць гэтыя сіметрыйныя ўласцівасці. Сфармуляваная Вольфгангам Паўлі у 1940 годзе тэарэма аб сувязі спіна са статыстыкай сцвярджае, што часціцы з цэлым спінам (s = 0, 1, 2, …) з'яўляюцца базонамі, а часціцы з паўцелым спінам (s = 12, 32, …) — ферміёнамі.

Абагульненне спіна[правіць | правіць зыходнік]

Увядзенне спіна з'явілася удалым ужываннем новай фізічнай ідэі: пастуляванне таго, што існуе прастора станаў, ніяк не звязаных з перамяшчэннем часціцы ў звычайнай прасторы. Абагульненне гэтай ідэі ў ядзернай фізіцы прывяло да паняцця ізатапічнага спіна, які дзейнічае ў адмысловай ізоспінавай прасторы. У далейшым, пры апісанні моцных узаемадзеянняў былі ўведзеныя ўнутраная каляровая прастора і квантавы лік «колер» — больш складаны аналаг спіна.

Спін класічных сістэм[правіць | правіць зыходнік]

Паняцце спіна было ўведзена ў квантавай тэорыі. Тым не менш, у рэлятывісцкай механіцы можна вызначыць спін класічнай (не квантавай) сістэмы як уласны момант імпульсу [1].. Класічны спін з'яўляецца 4-вектарам і вызначаецца наступным чынам:

S_\nu  = \frac{1}{2}\,\varepsilon_{\nu\alpha\beta\gamma}\,L^{\alpha\beta}\,U^\gamma,

дзе

  • L^{\alpha\beta}=\sum (x^\alpha p^\beta-x^\beta p^\alpha) — тэнзар поўнага моманту імпульсу сістэмы (сумаванне праводзіцца па ўсіх часціцам сістэмы);
  • U^{\alpha}=P^\alpha/M — сумарная 4-хуткасць сістэмы, вызначаная пры дапамозе сумарнага 4-імпульсу P^\alpha=\sum p^\alpha і масы M сістэмы;
  • \varepsilon_{\nu\alpha\beta\gamma} — тэнзар Леві-Чывіты.

У сілу антысіметрыі тэнзар Леві-Чывіты, 4-вектар спіна заўсёды артаганальны да 4-хуткасці U^{\alpha}.. У сістэме адліку, у якой сумарны імпульс сістэмы роўны нулю, прасторавыя кампаненты спіна супадаюць з вектарам моманту імпульсу, а часовая кампанента роўная нулю.

Іменна таму спін называюць уласным момантам імпульсу.

У квантавай тэорыі поля гэта вызначэнне спіна захоўваецца. У якасці моманту імпульсу і сумарнага імпульсу выступаюць інтэгралы руху адпаведнага поля. У выніку працэдуры другаснага квантавання 4-вектар спіна становіцца аператарам з дыскрэтнымі ўласнымі значэннямі.

Гл. таксама[правіць | правіць зыходнік]

Зноскі

  1. Вейнберг С. Гравитация и космология — M.: Мир, 1975.

Літаратура[правіць | правіць зыходнік]

  • Физическая энциклопедия. Под ред. А. М. Прохорова. — М.: «Большая российская энциклопедия», 1994. — ISBN 5-85270-087-8.

Спасылкі[правіць | правіць зыходнік]