Сіметрыя (фізіка): Розніца паміж версіямі

З Вікіпедыі, свабоднай энцыклапедыі
[недагледжаная версія][недагледжаная версія]
Змесціва выдалена Змесціва дададзена
Няма тлумачэння праўкі
др афармленне, стыль, арфаграфія
Радок 1: Радок 1:
'''Сіметрыя''' ў шырокім сэнсе — адпаведнасць, нязменнасць (інварыянтнасць), праяўляюцца, пры якіх-небудзь зменах, пераўтварэннях (напрыклад: становішча, энергіі, інфармацыі, іншага). У фізіцы, сіметрыя [[Фізічная сістэма|фізічнай сістэмы]] — гэта некаторы ўласцівасць, якое захоўваецца пасля правядзення пераўтварэнняў.
'''Сіметрыя''' ў шырокім сэнсе — адпаведнасць, нязменнасць (інварыянтнасць), якія праяўляюцца пры якіх-небудзь зменах, пераўтварэннях (напрыклад: становішча, энергіі, інфармацыі, іншага). У фізіцы, сіметрыя [[Фізічная сістэма|фізічнай сістэмы]] — гэта некаторая ўласцівасць, якая захоўваецца пасля правядзення пераўтварэнняў.


'''Сіметрыя''' (сіметрыі) — адно з фундаментальных паняццяў у сучаснай фізіцы, якое iграе найважную ролю ў фармулёўцы сучасных фізічных тэорый. Сіметрыі, якія ўлічваюцца ў [[Фізіка|фізіцы]], даволі разнастайныя, пачынаючы з сіметрыяй звычайнага трохмернага «фізічнай прасторы» (такімі, напрыклад, як люстраная сіметрыя), працягваючы больш абстрактнымі і менш навочнымі (такімі як калібравальная інварыянтнай).
'''Сіметрыя''' (сіметрыі) — адно з фундаментальных паняццяў у сучаснай фізіцы, якое iграе найважнейшую ролю ў фармулёўцы сучасных фізічных тэорый. Сіметрыі, якія ўлічваюцца ў [[Фізіка|фізіцы]], даволі разнастайныя, пачынаючы з сіметрый звычайнай трохмернай «фізічнай прасторы» (такіх, напрыклад, як люстраная сіметрыя), працягваючы больш абстрактнымі і менш нагляднымі (такімі як калібровачная інварыянтнасць).


Некаторыя сіметрыі ў сучаснай фізіцы лічацца дакладнымі, іншыя — толькі набліжанымі. Таксама важную ролю адыгрывае канцэпцыя спантанага парушэння сіметрыі.
Некаторыя сіметрыі ў сучаснай фізіцы лічацца дакладнымі, іншыя — толькі прыбліжанымі. Таксама важную ролю адыгрывае канцэпцыя спантаннага парушэння сіметрыі.


Гістарычна выкарыстанне сіметрыі ў фізіцы прасочваецца з старажытнасці, але найбольш рэвалюцыйным для фізікі ў цэлым, па-відаць, стала ўжыванне такога прынцыпу сіметрыі, як прынцып адноснасці (як у Галілея, так і ў Пуанкарэ — Лорэнца — Эйнштэйна), які стаў затым як бы ўзорам для ўвядзення і выкарыстання ў тэарытычнай фізіцы іншых прынцыпаў сіметрыі (першым з якіх стаў, па-відаць, прынцып агульнай каварыянтнасці, які з’яўляюцца дастаткова прамым пашырэннем прынцыпу адноснасці і які прывёў да агульнай тэорыі адноснасці Эйншэйна).
Гістарычна выкарыстанне сіметрыі ў фізіцы прасочваецца са старажытнасці, але найбольш рэвалюцыйным для фізікі ў цэлым, мабыць, стала ўжыванне такога прынцыпу сіметрыі, як [[прынцып адноснасці]] (як у Галілея, так і ў Пуанкарэ — Лорэнца — Эйнштэйна), які стаў затым як бы ўзорам для ўвядзення і выкарыстання ў тэарытычнай фізіцы іншых прынцыпаў сіметрыі (першым з якіх стаў, відаць, прынцып агульнай каварыянтнасці, які з’яўляюцца дастаткова прамым пашырэннем прынцыпу адноснасці і які прывёў да агульнай тэорыі адноснасці Эйнштэйна).


''Групай сіметрыі'' фізічнай задачы называецца група, кожны элемент якой з’яўляецца лінейнай аперацыяй сіметрыі задачы, які адлюстроўвае адзін элемент мноства рашэнняў задачы ў iншы<ref>''Любарский Г. Я.'' Теория групп и физика. С. 56.</ref>.
<part>

Групай сіметрыі фізічнай задачы называецца група, кожны элемент якой з—яўляецца лінейнай аперацыяй сіметрыі задачы, які адлюстроўвае адзін элемент мноства рашэнняў задачы, у iншай.<ref>'' Любарскi Г.Я.'' Теория групп и физика. — <abbr>М.</abbr>: Наука, 1986. — 224 с..</ref>.


== Тэарэма Нётэр ==
== Тэарэма Нётэр ==
У 1918 годзе нямецкі матэматык [[Эмі Нётэр|Нётэр]] даказала тэарэму, згодна з якой кожнай бесперапыннай сіметрыі фізічнай сістэмы адпавядае некаторы закон захавання. Наяўнасць гэтай тэарэмы дазваляе праводзіць аналіз фізічнай сістэмы на аснове наяўных дадзеных аб сіметрыі, якой гэтая сістэма валодае. З яе, напрыклад, вынікае, што інварыянтнай раўнанняў руху цела з цягам часу прыводзіць да [[|закон захавання энергіі|закона захавання энергіі]]; інварыянтнай адносна зрухаў у прасторы — да закона захавання імпульсу; інварыянтнай адносна кручэнняў — да закона захавання моманту імпульсу.
У 1918 годзе нямецкі матэматык [[Эмі Нётэр|Нётэр]] даказала тэарэму, згодна з якой кожнай неперарыўнай сіметрыі фізічнай сістэмы адпавядае некаторы закон захавання. Наяўнасць гэтай тэарэмы дазваляе праводзіць аналіз фізічнай сістэмы на аснове наяўных дадзеных аб сіметрыі, якой гэтая сістэма валодае. З яе, напрыклад, вынікае, што інварыянтнасць ураўненняў руху цела адносна часу прыводзіць да [[закон захавання энергіі|закона захавання энергіі]]; інварыянтнасць адносна зрухаў у прасторы — да закона захавання імпульсу; інварыянтнасць адносна вярчэнняў — да закона захавання моманту імпульсу.


== Гл. таксама ==
== Гл. таксама ==
* [[Група сіметрыі]]
* [[Імпульс]]
* [[Тэарэма Нётэр]]
* [[Фізіка]]
* [[Суперсіметрыя]]


== Літаратура ==
== Літаратура ==
* Фермi Э. Квантовая механика. — <abbr>М.</abbr>: Мир, 1968. — 366 с.
* ''Ферми Э.'' Квантовая механика. — <abbr>М.</abbr>: Мир, 1968. — 366 с.
* ''Любарский Г. Я.'' Теория групп и физика. — М.: Наука, 1986. — 224 с.

[[Катэгорыя:Сіметрыя (фізіка)| ]]
[[Катэгорыя:Сіметрыя (фізіка)| ]]

Версія ад 23:39, 15 мая 2018

Сіметрыя ў шырокім сэнсе — адпаведнасць, нязменнасць (інварыянтнасць), якія праяўляюцца пры якіх-небудзь зменах, пераўтварэннях (напрыклад: становішча, энергіі, інфармацыі, іншага). У фізіцы, сіметрыя фізічнай сістэмы — гэта некаторая ўласцівасць, якая захоўваецца пасля правядзення пераўтварэнняў.

Сіметрыя (сіметрыі) — адно з фундаментальных паняццяў у сучаснай фізіцы, якое iграе найважнейшую ролю ў фармулёўцы сучасных фізічных тэорый. Сіметрыі, якія ўлічваюцца ў фізіцы, даволі разнастайныя, пачынаючы з сіметрый звычайнай трохмернай «фізічнай прасторы» (такіх, напрыклад, як люстраная сіметрыя), працягваючы больш абстрактнымі і менш нагляднымі (такімі як калібровачная інварыянтнасць).

Некаторыя сіметрыі ў сучаснай фізіцы лічацца дакладнымі, іншыя — толькі прыбліжанымі. Таксама важную ролю адыгрывае канцэпцыя спантаннага парушэння сіметрыі.

Гістарычна выкарыстанне сіметрыі ў фізіцы прасочваецца са старажытнасці, але найбольш рэвалюцыйным для фізікі ў цэлым, мабыць, стала ўжыванне такога прынцыпу сіметрыі, як прынцып адноснасці (як у Галілея, так і ў Пуанкарэ — Лорэнца — Эйнштэйна), які стаў затым як бы ўзорам для ўвядзення і выкарыстання ў тэарытычнай фізіцы іншых прынцыпаў сіметрыі (першым з якіх стаў, відаць, прынцып агульнай каварыянтнасці, які з’яўляюцца дастаткова прамым пашырэннем прынцыпу адноснасці і які прывёў да агульнай тэорыі адноснасці Эйнштэйна).

Групай сіметрыі фізічнай задачы называецца група, кожны элемент якой з’яўляецца лінейнай аперацыяй сіметрыі задачы, які адлюстроўвае адзін элемент мноства рашэнняў задачы ў iншы[1].

Тэарэма Нётэр

У 1918 годзе нямецкі матэматык Нётэр даказала тэарэму, згодна з якой кожнай неперарыўнай сіметрыі фізічнай сістэмы адпавядае некаторы закон захавання. Наяўнасць гэтай тэарэмы дазваляе праводзіць аналіз фізічнай сістэмы на аснове наяўных дадзеных аб сіметрыі, якой гэтая сістэма валодае. З яе, напрыклад, вынікае, што інварыянтнасць ураўненняў руху цела адносна часу прыводзіць да закона захавання энергіі; інварыянтнасць адносна зрухаў у прасторы — да закона захавання імпульсу; інварыянтнасць адносна вярчэнняў — да закона захавання моманту імпульсу.

Гл. таксама

Літаратура

  • Ферми Э. Квантовая механика. — М.: Мир, 1968. — 366 с.
  • Любарский Г. Я. Теория групп и физика. — М.: Наука, 1986. — 224 с.
  1. Любарский Г. Я. Теория групп и физика. С. 56.