Артаганальная група

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці
Група, алгебра
Rubik's cube.svg
Тэорыя груп
Гл. таксама «Фізічны партал»


Артаганальная групагрупа ўсіх лінейных пераўтварэнняў -мернай вектарнай прасторы над полем , якія захоўваюць фіксаваную невыраджаную квадратычную форму на (гэта значыць такіх лінейных пераўтварэнняў , што для любога ).

Абазначэнні і звязаныя вызначэнні[правіць | правіць зыходнік]

  • Элементы артаганальнай групы называюцца артаганальнымі (адносна ) пераўтварэннямі , а таксама аўтамарфізмамі формы (дакладней, аўтамарфізмамі прасторы адносна формы ).
  • Абазначаецца , , і т. п. Калі квадратычная форма не абазначана відавочна, то маецца на ўвазе форма, якая задаецца сумай квадратаў каардынат, г. зн. якая выражаецца адзінкавай матрыцай.
  • Над полем рэчаісных лікаў, артаганальная група незнакавызначай формы з сігнатурай ( плюсаў, мінусаў) дзе , абазначаецца O(,.

Уласцівасці[правіць | правіць зыходнік]

  • У выпадку, калі характарыстыка асноўнага поля больш за два, то з звязана невыраджаная сіметрычная білінейная форма на , якая выражаецца формулай
Тады артаганальная група складаецца ў дакладнасці з тых лінейных пераўтварэнняў прасторы , якія захоўваюць , і абазначаецца праз або (калі ясна аб якім полі і форме ідзе гаворка) проста праз .
  • Калі — матрыца формы ў нейкім базісе прасторы , то артаганальная група можа быць атаясамлена з групай ўсіх такіх матрыц з каэфіцыентамі ў , што
  • У прыватнасці, калі базіс такі, што з'яўляецца сумай квадратаў каардынат (гэта значыць, матрыца адзінкавая), то такія матрыцы называюцца артаганальнымі.

Іншыя групы[правіць | правіць зыходнік]

Артаганальная група з'яўляецца падгрупай поўнай лінейнай групы GL(). Элементы артаганальнай групы, вызначнік якіх роўны 1 (гэта ўласцівасць не залежыць ад базісу), утвараюць падгрупу — спецыяльную артаганальную групу , якая абазначае гэтак жа як і артаганальную групу але з даданнем літары «S». , па пабудове, з'яўляецца таксама падгрупай спецыяльнай лінейнай групы .

Гл. таксама[правіць | правіць зыходнік]