Гравітамагнетызм

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці

Гравітамагнетызм, гравімагнетызм, часам гравітаэлектрамагнетызм — агульная назва некалькіх эфектаў, выкліканых рухам гравітуючага цела.

Гравітамагнетызм ў агульнай тэорыі адноснасці[правіць | правіць зыходнік]

У адрозненне ад ньютанаўскай механікі, у агульнай тэорыі адноснасці (АТА) рух пробнай часціцы (і ход гадзінніка) у гравітацыйным полі залежыць ад таго, ці круціцца цела — крыніца поля. Уплыў кручэння адбіваецца нават у тым выпадку, калі размеркаванне мас у крыніцы не змяняецца з часам (існуе цыліндрычная сіметрыя адносна восі вярчэння). Гравітамагнітныя эфекты ў слабых палях надзвычай малыя. У слабым гравітацыйным полі і пры малых скарасцях руху часціц можна асобна разглядаць гравітацыйную («гравітаэлектрычную») і гравітамагнітную сілы, якія дзейнічаюць на пробнае цела, прычым напружанасць гравітамагнітнага поля і гравітамагнітная сіла апісваюцца ўраўненнямі, блізкімі да адпаведных ураўненняў электрамагнетызму.

Разгледзім рух пробнай часціцы ў наваколлі сферычна сіметрычнага цела, якое верціцца, з масай M і момантам імпульсу L. Калі часціца масай m рухаецца са скорасцю (c — скорасць святла), то на часціцу, акрамя гравітацыйнай сілы, будзе дзейнічаць гравітамагнітная сіла, накіраваная, падобна сіле Лорэнца, перпендыкулярна як скорасці часціцы, так і напружанасці гравітамагнітнага поля Bg Bg[1]:

Пры гэтым, калі маса, якая верціцца, знаходзіцца ў пачатку каардынат і r — радыус-вектар, напружанасць гравітамагнітнага поля роўная:[1]

дзе G — гравітацыйная пастаянная.

Апошняя формула супадае (за выключэннем каэфіцыента) з аналагічнай формулай для поля магнітнага дыполя з дыпольным момантам L.

У АТА гравітацыя не з'яўляецца самастойнай фізічнай сілай. Гравітацыя АТА зводзіцца да скрыўлення прасторы-часу і трактуецца як геаметрычны эфект, прыраўноўваецца да метрычнага поля. Такі ж геаметрычны сэнс атрымлівае і гравітамагнітнее поле Bg.

У выпадку моцных палёў і рэлятывісцкіх скарасцей гравітамагнітнае поле нельга разглядаць асобна ад гравітацыйнага, гэтак жа як у электрамагнетызме электрычнае і магнітнае палі можна падзяляць толькі ў нерэлятывісцкіх гранічных статычных і стацыянарных выпадках.

Ураўненні гравітаэлектрамагнетызму[правіць | правіць зыходнік]

Згодна з агульнай тэорыі адноснасці, гравітацыйнае поле, спароджанае аб'ектам, што верціцца, у пэўным гранічным выпадку можа быць апісана ўраўненнямі, якія маюць тую ж форму, што і ўраўненні Максвела ў класічнай электрадынамікі. Зыходзячы з асноўных ураўненняў АТА і мяркуючы, што гравітацыйнае поле слабае, можна вывесці гравітацыйныя аналагі ўраўненняў электрамагнітнага поля, якія можна запісаць у наступнай форме:[2][3][4]

Ураўненні гравітаэлектрамагнетызму Ураўненні Максвела у СГС

дзе:

На пробную часціцу малой масы m ўздзейнічае ў гравітаэлектрамагнітным поле сіла, якая з'яўляецца аналагам сілы Лорэнца ў электрамагнітным полі і выражаецца наступным чынам:

дзе:

Каэфіцыент 2 пры Bg ва ўраўненнях для гравітамагнітнай сілы, якога няма ў аналагічных ураўненнях для магнітнай сілы, узнікае з-за таго, што гравітацыйнае поле апісваецца тэнзарам другога рангу, у адрозненне ад электрамагнітнага поля, якое апісваецца вектарам (тэнзарам першага рангу). Часам гравітамагнітным полем называюць велічыню 2Bg — у гэтым выпадку каэфіцыент 2 знікае з ураўненняў для сілы, а ва ўраўненнях для гравімагнітнага поля з'яўляецца каэфіцыент 12.

Пры дадзеным вызначэнні гравітамагнітнага поля яго размернасць супадае з размернасцю гравітаэлектрыческага поля (ньютанаўскай гравітацыі) і роўная размернасці паскарэння. Выкарыстоўваецца таксама іншае азначэнне, пры якім гравітамагнітным полем называюць велічыню Bg/c, і ў гэтым выпадку яно мае размернасць частаты, а прыведзеныя вышэй ураўненні для слабага гравітацыйнага поля пераўтвараюцца ў іншую форму, падобную з ураўненнямі Максвела ў сістэме СІ [5].

Характэрныя велічыні поля[правіць | правіць зыходнік]

З прыведзеных вышэй ураўненняў гравітамагнетызму можна атрымаць ацэнкі характэрных велічынь поля. Напрыклад, напружанасць гравітамагнітнага поля, індукаванага кручэннем Сонца (L=1,6×1041 кг·м²/с), на арбіце Зямлі складае 5,3×10−12 м/с², што ў 1,3×109 разоў менш паскарэння свабоднага падзення, выкліканага прыцягненнем Сонца. Гравітамагнітная сіла, якая дзейнічае на Зямлю, накіравана ад Сонца і роўная 3,1×109 Н. Гэтая велічыня, хоць і вельмі вялікая з пункта гледжання паўсядзённых уяўленняў, на 8 парадкаў менш звычайнай (ньютанаўскай — у дадзеным кантэксце яе называюць «гравітаэлектрычнай») сілы прыцягнення, якая дзейнічае на Зямлю з боку Сонца. Напружанасць гравітамагнітнага поля паблізу паверхні Зямлі, індукаванага кручэннем Зямлі (яе вуглавы момант L=7×1033 кг·м²/с), роўная на экватары 3,1×10−6 м/с², што складае 3,2×10−7 стандартнага паскарэння свабоднага падзення. Круцільны момант Галактыкі ў наваколлі Сонца індукуе гравітамагнітнае поле напружанасцю ~2×10−13 м/с², прыкладна на 3,5 парадку менш цэнтраімклівага паскарэння Сонца ў гравітацыйным полі Галактыкі.

Гравітамагнітныя эфекты і іх эксперыментальны пошук[правіць | правіць зыходнік]

У якасці асобных гравітамагнітных эфектаў можна вылучыць:

  • Эфект Лензэ — Тырынга[6]. Гэта прэцэсія спінавага і арбітальнага момантаў пробнай часціцы паблізу цела, якое верціцца. Імгненная вуглавая скорасць прэцэсіі моманту Ωp = −Bg/2c. Дадатковы член у гамільтаніяне пробнай часціцы апісвае ўзаемадзеянне яе спінавага моманту з момантам цела, якое верціцца: ΔH = σ · Ω па аналогіі з магнітным момантам у магнітным полі, у неаднародным гравімагнітным поле на спінавы момант дзейнічае гравімагнітная сіла Штэрна — Герлаха . Гэтая сіла, у прыватнасці прыводзіць да таго, што вага часціцы на паверхні Зямлі, якая верціцца, залежыць ад кірунку спіна часціцы. Аднак рознасць энергій для аднолькавых часціц з праекцыямі спіна на паверхні Зямлі не перавышае 10−28 эВ, што пакуль знаходзіцца далёка за межамі адчувальнасці эксперыменту [3]. Аднак для макраскапічным пробных часціц і спінавы, і арбітальны эфект Лензэ — Тырынга быў эксперыментальна правераны.
  • Арбітальны эфект Лензэ — Тырынга прыводзіць да павароту эліптычнай арбіты часціцы ў гравітацыйным полі цела, якое верціцца. Напрыклад, для нізкаарбітальнага штучнага спадарожніка Зямлі на амаль кругавой арбіце вуглавая скорасць павароту перыгея складзе 0,26 вуглавой секунды у год; для арбіты Меркурыя эфект роўны -−0,0128″ у стагоддзе. Варта адзначыць, што дадзены эфект дадаецца да стандартнай агульнарэлятывісцкай прэцэсіі перыцэнтра (43" у стагоддзе для Меркурыя), якая не залежыць ад кручэння цэнтральнага цела. Арбітальная прэцэсія Лензэ — Тырынга была ўпершыню вымерана для спадарожнікаў LAGEOS і LAGEOS II[7].
  • Спінавы эфект Лензэ — Тырынга (часам яго называюць эфектам Шыфа) выяўляецца ў прэцэсіі гіраскопа, які знаходзіцца паблізу цела, што верціцца. Гэты эфект нядаўна быў правераны з дапамогай гіраскопаў на спадарожніку Gravity Probe B; першыя вынікі апублікаваныя ў красавіку 2007, але ў сувязі з недаўлікам ўплыву электрычных зарадаў на гіраскопы дакладнасць апрацоўкі дадзеных спачатку была недастатковая, каб вылучыць эфект (паварот восі на −0,0392 вуглавой секунды ў год у плоскасці зямнога экватара). Улік эфектаў, якія заміналі, дазволіў вылучыць чаканы сігнал, хоць апрацоўка дадзеных доўжылася да мая 2011. Канчатковы вынік (−0,0372±0,0072 вуглавой секунды у год) у межах хібнасці ўзгадняецца з прыведзеных вышэй значэннем, прадказаным АТА.
  • Геадэзічная прэцэсія (эфект дэ Сітэра) узнікае пры паралельным пераносе вектара моманту імпульсу ў скрыўленай прасторы-часе. Для сістэмы Зямля-Месяц, якая рухаецца ў полі Сонца, скорасць геадэзічнай прэцэсіі роўная 1,9" у стагоддзе; дакладныя астраметрычныя вымярэнні выявілі гэты эфект, які супаў з прадказанай у граніцах памылкі ~ 1 %. Геадэзічная прэцэсія гіраскопаў на спадарожніку Gravity Probe B супала з прадказаным значэннем (паварот восі на 6,606 вуглавой секунды ў год у плоскасці арбіты спадарожніка) з дакладнасцю лепш 1 %.
  • Гравітамагнітны зрух часу. У слабых палях (напрыклад, паблізу Зямлі) гэты эфект маскіруецца стандартнымі спец- і агульнарэлятывісцкімі эфектамі сыходу гадзінніка і знаходзіцца далёка за межамі сучаснай дакладнасці эксперыменту. Папраўка да ходу гадзінніка на спадарожніку, які рухаецца з вуглавой скорасцю ω па арбіце радыусам R ў экватарыяльнай плоскасці масіўнага шара, роўная 1 ± 3GLω/Rc4 (у адносінах да гадзінніка аддаленага назіральніка; знак + для аднанакіраванага кручэння).

Зноскі

  1. 1,0 1,1 M. L. Ruggiero, A. Tartaglia. Gravitomagnetic effects. Nuovo Cim. 117B (2002) 743—768 (gr-qc/0207065), формулы (24) і (26).
  2. R.P. Lano (1996). "Gravitational Meissner Effect". arΧiv:hep-th/9603077 [hep-th]. 
  3. 3,0 3,1 B. Mashhoon, F. Gronwald, H.I.M. Lichtenegger (1999). "Gravitomagnetism and the Clock Effect". arΧiv:gr-qc/9912027 [gr-qc]. 
  4. S.J. Clark, R.W. Tucker (2000). "Gauge symmetry and gravito-electromagnetism". Classical and Quantum Gravity 17: 4125–4157. doi:10.1088/0264-9381/17/19/311. 
  5. M. Agop, C. Gh. Buzea, B. Ciobanu (1999). "On Gravitational Shielding in Electromagnetic Fields". arΧiv:physics/9911011 [physics.gen-ph]. 
  6. J. Lense, H. Thirring. Uber den Einfluß der Eigenrotation der Zentralkorper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, 19 (1918), 156—163.
  7. I. Ciufolini, E. C. Pavlis. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431 (2004) 958.

Спасылкі[правіць | правіць зыходнік]

Тэорыі гравітацыі
Стандартныя тэорыі гравітацыі Альтэрнатыўныя тэорыі гравітацыі Квантавыя тэорыі гравітацыі Адзіныя тэорыі поля
Класічная фізіка

Рэлятывісцкая фізіка

Прынцыпы

Класічныя

Рэлятывісцкія

Шматмерныя

Струнныя

Іншыя