Гравітацыйная задача N цел

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці

Гравітацыйная задача N цел з’яўляецца класічнай праблемай нябеснай механікі і гравітацыйнай дынамікі Ньютана.

Яна фармулюецца наступным чынам.

У пустаце знаходзіцца N матэрыяльных пунктаў, масы якіх вядомыя {mi}. Няхай папарнае ўзаемадзеянне пунктаў падпарадкавана закону прыцягнення Ньютана, і хай сілы гравітацыі адытыўныя. Няхай вядомыя пачатковыя на момант часу t = 0 становішчы і скорасці кожнай кропкі ri|=0=ri0, vi|t=0=vi0. Трэба знайсці становішчы пунктаў для ўсіх наступных момантаў часу.

Матэматычная фармуліроўка гравітацыйнай задачы N цел[правіць | правіць зыходнік]

Эвалюцыя сістэмы N цел (матэрыяльных пунктаў) апісваецца наступнай сістэмай ураўненняў:

дзе  — маса, радыус-вектар і скорасць і-га цела адпаведна, G — гравітацыйная пастаянная. Масы цел, а таксама палажэнні і скорасці ў пачатковы момант часу лічацца вядомымі. Неабходна знайсці палажэнні і скорасці ўсіх часціц у адвольны момант часу.

Аналітычнае рашэнне[правіць | правіць зыходнік]

Траекторыі двух цел з рознай масай, якія ўзаемадзейнічаюць між сабой.
Прыблізныя траекторыі трох аднолькавых цел, якія знаходзіліся ў вяршынях нераўнабедранага трохвугольніка і валодалі нулявымі пачатковымі скарасцямі
  • Выпадак адасобленага пункта N = 1 не з’яўляецца прадметам разгляду гравітацыйнай дынамікі. Паводзіны такога пункта апісваюцца першым законам Ньютана. Гравітацыйнае ўзаемадзеянне — гэта, як мінімум, парны акт.
  • Рашэннем задачы двух цел N = 2 з’яўляецца барыцентрычная сістэмная арбіта (не блытаць з палявой цэнтральнай арбітай Кеплера). У поўнай адпаведнасці з зыходнай пастаноўкай задачы, рашэнне задачы двух цел зусім неадчувальна да нумарацыі пунктаў і суадносін іх мас. Палявая цэнтральная арбіта Кеплера ўзнікае гранічным пераходам m1/m2 → 0. Пры гэтым губляецца раўнапраўе пунктаў: m2 прымаецца абсалютна нерухомым цэнтрам прыцягнення, а першы пункт «губляе» масу, — параметр m1 выпадае з дынамічных ураўненняў. У матэматычным сэнсе сістэма, якая ўзнікае, — дэгенератыўныя, бо колькасць ураўненняў і параметраў памяншаецца ў два разы. Таму зваротная асімптотыка становіцца немагчымай: з законаў Кеплера не вынікае закон прыцягнення Ньютана. (Варта ўлічыць, што масы наогул не згадваюцца ў законах Кеплера!)
  • Для задачы трох цел ў 1912 Карлам Зундманам было атрымана агульнае аналітычнае рашэнне ў выглядзе радоў. Хоць гэтыя рады і сыходзяцца для любога моманту часу, з любымі пачатковымі ўмовамі, але сыходзяцца яны вельмі павольна[1]. З-за вельмі павольнай збежнасці практычнае выкарыстанне радоў Зундмана немагчыма[2].

Таксама, для задачы трох цел Генрыхам Брунсам і Анры Пуанкарэ было паказана, што яе агульнае рашэнне нельга выразіць праз алгебраічныя або праз адназначныя трансцэндэнтныя функцыі каардынат і скарасцей[2]. Акрамя таго, вядома толькі 5 дакладных рашэнняў задачы трох цел для спецыяльных пачатковых скарасцей і каардынат аб’ектаў.

  • На дадзены момант, у агульным выглядзе задача N цел для N>3 можа быць вырашана толькі лікава (гл. ніжэй). Прычым для N = 3 рады Зундмана нават пры сучасным узроўні камп'ютараў выкарыстаць практычна немагчыма.

Лікавыя метады[правіць | правіць зыходнік]

Са з’яўленнем камп'ютарнай тэхнікі з’явілася рэальная магчымасць вывучаць уласцівасці сістэм гравітуючых цел шляхам лікавага рашэння сістэмы ўраўненняў руху. Для гэтага выкарыстоўваецца часцей за ўсё метад Рунге — Куты (звычайна — чацвёртага парадку, але часта выкарыстоўваюцца і больш высокія парадкі).

Лікавыя метады сутыкаюцца з тымі ж праблемамі, што і аналітычныя — пры цесным збліжэнні цел неабходна памяншаць крок інтэгравання, а пры гэтым хутка растуць лікавыя памылкі. Акрамя таго, пры «прамым» інтэграванні колькасць вылічэнняў сілы для кожнага кроку расце з ростам колькасці цел прыблізна як , што робіць практычна немагчымым мадэляванне сістэм, якія складаюцца з дзясяткаў і соцень тысяч цел.

Для вырашэння гэтай праблемы прымяняюць наступныя алгарытмы (або іх камбінацыі):

  • Схема Ахмада-Коэна — прапаноўвае падзяліць сілу, якая дзейнічае на кожнае цела, на 2 часткі — ірэгулярную (ад блізкіх цел — «суседзяў») і рэгулярную (ад больш далёкіх цел).

Адпаведна, рэгулярную сілу можна перавылічаць з значна большым крокам, чым ірэгулярную.

  • «Дрэўны алгарытм» (Treecode), упершыню рэалізаваны Джошуа Барнесам[3].

Гл. таксама[правіць | правіць зыходнік]

Зноскі