Кольцы Ньютана

З пляцоўкі Вікіпедыя
Jump to navigation Jump to search
Кольцы Ньютана

Кольцы Ньютана — плоскавыпуклыя інтэрферэнцыйныя максімумы і мінімумы, якія з’яўляюцца вакол кропкі дотыку злёгку выгнутай выпуклай лінзы і плоска паралельных пласціны пры праходжанні святла скрозь лінзу і пласціну. Упершыню былі апісаны ў 1675 годзе І. Ньютанам[1].

Апісанне[правіць | правіць зыходнік]

Інтэрферэнцыйная карціна ў выглядзе кольцаў узнікае пры адлюстраванні святла ад двух паверхняў, адна з якіх плоская, а іншая мае адносна вялікі радыус крывізны і датыкаецца з першай (напрыклад, шкляная пласцінка і плоскавыпуклая лінза). Калі на такую ​​сістэму ў кірунку, перпендыкулярным плоскай паверхні, падае пучок манахраматычнага святла, то светлавыя хвалі, адлюстраваны ад кожнай са згаданых паверхняў, інтэрферуюць паміж сабой. Сфарміраваная такім чынам інтэрферэнцыйныя карціна складаецца з назіраемага ў месцы судотыку паверхняў цёмнага гуртка і навакольных яго чаргуюцца паміж сабой светлых і цёмных канцэнтрычных кольцаў[2].

Класічнае тлумачэнне з’явы[правіць | правіць зыходнік]

У часы Ньютана з-за недахопу звестак аб прыродзе святла даць поўнае тлумачэнне механізму ўзнікнення кольцаў было вельмі цяжка. Ньютан усталяваў сувязь паміж памерамі кольцаў і крывізной лінзы; ён разумеў, што назіраны эфект звязаны з уласцівасцю перыядычнасці святла, але здавальняюча растлумачыць прычыны ўтварэння кольцаў атрымалася толькі значна пазней Томасу Юнгу. Прасочым за ходам яго разважанняў. У іх аснове ляжыць здагадку аб тым, што святло — гэта хвалі. Разгледзім выпадак, калі манахраматычнага хваля падае амаль перпендыкулярна на плоскавыпуклую лінзу.

Newtonringar1.png

Хваля 1 з’яўляецца ў выніку адлюстравання ад выпуклай паверхні лінзы на мяжы шкло — паветра, а хваля 2 — у выніку адлюстравання ад пласціны на мяжы паветра — шкло. Гэтыя хвалі кагерэнтныя, гэта значыць у іх аднолькавыя даўжыні хваль, а рознасць іх фаз сталая. Рознасць фаз узнікае з-за таго, што хваля 2 праходзіць большы шлях, чым хваля 1. Калі другая хваля адстае ад першай на цэлы лік даўжынь хваль, то, складаючыся, хвалі ўзмацняюць адзін аднаго.

дзе  — любы цэлы лік,  — даўжыня хвалі.

Наадварот, калі другая хваля адстае ад першай на няцотныя лік паў хваляў, то ваганні, выкліканыя імі, будуць адбывацца ў процілеглых фазах, і хвалі гасяць адзін аднаго.

дзе  — любы цэлы лік,  — даўжыня хвалі.

Для ўліку таго, што ў розных рэчывах хуткасць святла розная, пры вызначэнні палажэнняў мінімумаў і максімумаў выкарыстоўваюць не рознасць ходу, а аптычную рознасць ходу (розніца аптычных даўжынь шляху).

Радыус k-га светлага кальца Ньютана ў адлюстраваным святле выяўляецца наступнай формулай:

дзе  — радыус крывізны лінзы,  — даўжыня хвалі святла ў вакууме,  — паказчык праламлення асяроддзя паміж лінзай і пласцінкай.

Радыус k-га цёмнага кальца Ньютана ў адлюстраваным святле вызначаецца ў адпаведнасці з формулай:

Выкарыстанне[правіць | правіць зыходнік]

Кольцы Ньютана выкарыстоўваюцца для вымярэння радыусаў крывізны паверхняў, для вымярэння даўжынь хваль святла і паказчыкаў праламлення. У некаторых выпадках (напрыклад, пры сканаванні малюнкаў на плёнках) кольцы Ньютана ўяўляюць сабой непажаданую з’яву.

Зноскі

  1. Гагарин А. П. Ньютона кольца // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3 Магнитоплазменный компрессор — Пойнтинга теорема. — С. 370—371. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Ландсберг Г. С. Оптика. — М.: Физматлит, 2003. — С. 115. — 848 с. — ISBN 5-9221-0314-8.