Матэрыяльны пункт

З пляцоўкі Вікіпедыя
Jump to navigation Jump to search

Матэрыя́льны пунктцела, якое пры вырашэнні пэўнай фізічнай задачы ўмоўна прымаецца за пункт. Гэта азначае, што геаметрычныя памеры цела прымаюцца роўнымі да нуля.

Матэрыяльны пункт – гэта найпрасцейшая з механічных сістэм, якая можа рухацца толькі паступальна і не можа вярцецца або дэфармавацца.

Прадстаўленне цела ў якасці матэрыяльнага пункта дапушчальна, калі выконваюцца наступныя ўмовы:

  • цела мае невялікія памеры (у маштабе дадзенай задачы)
  • цела рухаецца паступальна або яго вярчальны рух у дадзенай задачы можна не ўлічваць

Дапушчальнасць або недапушчальнасць прыняцця цела за матэрыяльны пункт вызначаецца ўмовамі канкрэтнай задачы. Так, напрыклад, Зямлю можна лічыць матэрыяльным пунктам пры разглядзе яе руху вакол Сонца і нельга — калі разглядаецца яе рух вакол сваёй асі.

У вызначэнне матэрыяльнай кропкі мы ўключылі ўмову, што яна павінна быць макраскапічным целам. Гэта зроблена для таго, каб да яе руху можна было ўжываць класічную механіку. Аднак у шэрагу выпадкаў і рух мікрачасцін можа разглядацца на аснове класічнай механікі. Сюды адносяцца, напрыклад, рух электронаў, пратонаў або іёнаў у паскаральніках і электронна-іённых прыборах. У гэтых выпадках мікрачасціны можна разглядаць як матэрыяльныя кропкі класічнай механікі.

   Механіка адной матэрыяльнай кропкі або, карацей, механіка кропкі ў класічнай фізіцы з'яўляецца асновай для вывучэння механікі наогул. З класічнай пункту гледжання адвольнае макраскапічнай цела або сістэму тэл можна разумова разбіць на малыя макраскапічныя часткі, якія ўзаемадзейнічаюць паміж сабой. Кожную з такіх частак можна прыняць за матэрыяльную кропку.

   Тым самым вывучэнне руху адвольнай сістэмы тэл зводзіцца да вывучэння сістэмы ўзаемадзейнічаюць матэрыяльных кропак. Натуральна таму пачаць вывучэнне класічнай механікі з механікі адной матэрыяльнай кропкі, а затым перайсці да вывучэння сістэмы матэрыяльных кропак.

Абярэм якую-небудзь адвольную сістэму адліку і будзем адносіць да яе рух матэрыяльнай кропкі. Рух пункту будзе апісана цалкам, калі будзе вядома яе становішча ў любы момант часу адносна абранай сістэмы адліку. Становішча кропкі мы дамовімся характарызаваць яе прастакутнымі каардынатамі х, у, г, якія з'яўляюцца праекцыямі яе радиуса- вектара г на каардынатныя восі. Поўнае апісанне руху зводзіцца таму да знаходжання трох каардынатаў х, у, г як функцый часу t:

x = x(t) , y = y(t) , z = z(t) ,

або да знаходжання адной вектарнай функцыі

r = r(t).

Аднак для фармулёўкі асноўных законаў механікі, з дапамогай якіх тэарэтычна могуць быць знойдзеныя якія разглядаюцца функцыі, істотныя два новых паняцці - паняцце хуткасці і асабліва паняцце паскарэння. [1]

міні

Гл. таксама[правіць | правіць зыходнік]

Зноскі

  1. Д.В.Сивухин - общий курс физики, механика, том 1