Фактаргрупа

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці
Група, алгебра
Rubik's cube.svg
Тэорыя груп
Гл. таксама «Фізічны партал»


Фактаргрупа — канструкцыя, якая дае новую групу (фактаргрупу) па групе і яе нармальнай падгрупе.

Фактаргрупа групы па нармальнай падгрупе звычайна абазначаецца .

Вызначэнне[правіць | правіць зыходнік]

Няхай група, і — яе нармальная падгрупа. Тады на класах сумежнасці у

можна ўвесці множанне:

Лёгка праверыць, што гэтае памнажэнне не залежыць ад выбару элементаў у класах сумежнасці, гэта значыць калі і , то . Гэтае множанне вызначае структуру групы на мностве класаў сумежнасці, а атрыманая група называецца фактаргрупай па .

Уласцівасці[правіць | правіць зыходнік]

  • Тэарэма аб гомамарфізме: Для любога гомамарфізма
,
г. зн. фактаргрупа па ядру ізаморфна яе вобразу у .

Прыклады[правіць | правіць зыходнік]

  • Няхай , , тады ізаморфная .
  • Няхай (група нявыраджаных верхнетрохвугольных матрыц), (група верхніх унітрохвугольных матрыц), тады ізоморфна групе дыяганальных матрыц.

Літаратура[правіць | правіць зыходнік]

  • Винберг Э. Б. Курс алгебры. — м: «Факториал Пресс», 2002. — ISBN 5-88688-060-7.