Металы: Розніца паміж версіямі

З Вікіпедыі, свабоднай энцыклапедыі
[недагледжаная версія][недагледжаная версія]
Змесціва выдалена Змесціва дададзена
др Belahvostau перайменаваў старонку Метал у Металы па-над перасылкай
др clean up, replaced: асцяў → асцей, з’я → з'я, == → == (3), былі адкрытыя → былі адкрыты, іён → іон (2) using AWB
Радок 1: Радок 1:
'''Метал''' (мн. лік “металы”; ад {{lang-la|metallum}} — шахта) – [[Простыя рэчывы|простае рэчыва]], [[атам]]ы якіх вызначаюцца здольнасцю аддаваць [[валентныя электроны]] і пераходзіць у [[Зарад электрычны|дадатна зараджаныя]] [[іён]]ы. Абагуленыя [[валентныя электроны]] свабодна перамяшчаюцца ў [[Крышталь|крысталічнай рашотцы]], забяспечваючы [[Хімічная сувязь|сувязь]] паміж [[атам]]амі. Структура М. апісваецца зоннай теорыяй.
'''Метал''' (мн. лік “металы”; ад {{lang-la|metallum}} — шахта) – [[Простыя рэчывы|простае рэчыва]], [[атам]]ы якіх вызначаюцца здольнасцю аддаваць [[валентныя электроны]] і пераходзіць у [[Зарад электрычны|дадатна зараджаныя]] [[іон]]ы. Абагуленыя [[валентныя электроны]] свабодна перамяшчаюцца ў [[Крышталь|крысталічнай рашотцы]], забяспечваючы [[Хімічная сувязь|сувязь]] паміж [[атам]]амі. Структура М. апісваецца зоннай теорыяй.


Большасць (больш за 85) вядомых [[Хімічны элемент|хімічных элементаў]] – М. і толькі каля 22 — [[неметал]]ы.
Большасць (больш за 85) вядомых [[Хімічны элемент|хімічных элементаў]] – М. і толькі каля 22 — [[неметал]]ы.
Радок 6: Радок 6:


== Фізічныя ўласцівасці ==
== Фізічныя ўласцівасці ==
М. вызначаюцца высокай электра- і [[цеплаправоднасць|цеплаправоднасцю]], здольнасцью адбіваць светлавыя хвалі, пластычнацю. У цвёрдым выглядзе звычайна маюць [[Крышталь|крышталічную]] будову. Большасць М. крышталізуецца ў простых структурах (кубічных і гексаганальных) якія адпавядаюць найшчыльнейшай кампаноўцы [[атам]]аў. Шмат М. могуць існаваць у дзвюх і больш [[Крышталь|крышталічных]] мадыфікацыях (гл. [[Палімарфізм]]). Паліморфныя пераходы часам спалучаюцца са стратай металічных уласцівасцей (напрыклад, пераход белага [[волава]] (b-Sn) ў шэрае (a-Sn).

М. вызначаюцца высокай электра- і [[цеплаправоднасць|цеплаправоднасцю]], здольнасцью адбіваць светлавыя хвалі, пластычнацю. У цвёрдым выглядзе звычайна маюць [[Крышталь|крышталічную]] будову. Большасць М. крышталізуецца ў простых структурах (кубічных і гексаганальных) якія адпавядаюць найшчыльнейшай кампаноўцы [[атам]]аў. Шмат М. могуць існаваць у дзвюх і больш [[Крышталь|крышталічных]] мадыфікацыях (гл. [[Палімарфізм]]). Паліморфныя пераходы часам спалучаюцца са стратай металічных уласцівасцяў (напрыклад, пераход белага [[волава]] (b-Sn) ў шэрае (a-Sn).


Цвёрдасць некаторых металаў па шкале Моаса:<ref>{{кніга | аўтар = Поваренных А. С. |загаловак = Твердость минералов | выдавецтва = АН УССР| год = 1963 | старонкі = 197-208. — 304 с }}</ref>
Цвёрдасць некаторых металаў па шкале Моаса:<ref>{{кніга | аўтар = Поваренных А. С. |загаловак = Твердость минералов | выдавецтва = АН УССР| год = 1963 | старонкі = 197-208. — 304 с }}</ref>
Радок 116: Радок 115:


== Хімічныя ўласцівасці ==
== Хімічныя ўласцівасці ==
Агульныя для М. хімічныя ўласцівасці абумоўленыя слабой [[Хімічная сувязь|сувяззю]] [[Валентныя электроны|валентных электронаў]] з [[Ядро атама|ядром]] [[атам]]а: утварэнне дадатна [[Зарад электрычны|зараджаных]] [[іон]]аў (катыёнаў), станоўчая [[ступень акіслення]] ў [[Рэчывы складаныя|злучэннях]], утварэнне асновных [[аксід]]аў і [[гідраксід]]аў, выцясненне [[вадарод]]у з [[Кіслата|кіслотаў]] і г.д.

Агульныя для М. хімічныя ўласцівасці абумоўленыя слабой [[Хімічная сувязь|сувяззю]] [[Валентныя электроны|валентных электронаў]] з [[Ядро атама|ядром]] [[атам]]а: утварэнне дадатна [[Зарад электрычны|зараджаных]] [[іён]]аў (катыёнаў), станоўчая [[ступень акіслення]] ў [[Рэчывы складаныя|злучэннях]], утварэнне асновных [[аксід]]аў і [[гідраксід]]аў, выцясненне [[вадарод]]у з [[Кіслата|кіслотаў]] і г.д.


Металічныя ўласцівасці [[Хімічны элемент|элемента]] праяўляюцца тым яскравей, чым, ніжэй яго [[электраадмоўнасць]]. У падгрупах [[Перыядычная сістэма элементаў|Перыядычнай сістэмы]] з узрастаннем [[Атам|атамнага нумару]] [[электраадмоўнасць]] у цэлым змяншаецца, а металічныя ўласцівасці ўзрастаюць.
Металічныя ўласцівасці [[Хімічны элемент|элемента]] праяўляюцца тым яскравей, чым, ніжэй яго [[электраадмоўнасць]]. У падгрупах [[Перыядычная сістэма элементаў|Перыядычнай сістэмы]] з узрастаннем [[Атам|атамнага нумару]] [[электраадмоўнасць]] у цэлым змяншаецца, а металічныя ўласцівасці ўзрастаюць.


М. ад [[Літый|Li]] да [[Натрый|Na]] лёгка рэагуюць з [[кісларод]]ам на холадзе, іншыя злучаюцца з [[кісларод]]ам толькі пры награванні, а [[Ірыдый|Ir]], [[Плаціна|Pt]], [[Золата|Au]] з [[кісларод]]ам не ўзаемадзейнічаюць. Уласцівасці М. характарызуюцца іх месцам у [[Электрахіміны рад напружанняў металаў|электрахімічным радзе]]. М. ад [[Літый|Li]] да [[Натрый|Na]] выцясняюць [[вадарод]] з [[Вада|вады]] пры [[Нармальныя ўмовы|нармальных умовах]], а ад [[Магній|Mg]] да [[Талій|Tl]] — пры награванні. М., якія стаяць у [[Электрахіміны рад напружанняў металаў|электрахімічным радзе]] перад [[вадарод]]ам, выцясняюць яго з разбаўленых [[Кіслата|кіслотаў]] (на холадзе або пры награванні). М., якія стаяць у [[Электрахіміны рад напружанняў металаў|электрахімічным радзе]] пасля [[вадарод]]у, раствараюцца толькі ў [[Кіслата|кіслародных кіслотах]] (канцэнтраваная [[Серная кіслата|H2SO4]] ці [[Азотная кіслата|HNO3]]), а [[Плаціна|Pt]], [[Золата|Au]] — толькі ў [[Сумесь|сумесі]] гэтых [[Кіслата|кіслотаў]]. [[Аксід]]ы М. ад [[Літый|Li]] да [[Алюміній|Al]] і ад [[Лантан|La]] да [[Цынк|Zn]] [[Аднаўленне|аднаўляюцца]] цяжка, бліжэй да канца [[Электрахіміны рад напружанняў металаў|рада]] схільнасць да [[Аднаўленне|аднаўлення]] павялічваецца, [[аксід]]ы апошніх у [[Электрахіміны рад напружанняў металаў|радзе]] М. распадаюцца на М. і [[кісларод]] ужо пры невялікім награванні.
М. ад [[Літый|Li]] да [[Натрый|Na]] лёгка рэагуюць з [[кісларод]]ам на холадзе, іншыя злучаюцца з [[кісларод]]ам толькі пры награванні, а [[Ірыдый|Ir]], [[Плаціна|Pt]], [[Золата|Au]] з [[кісларод]]ам не ўзаемадзейнічаюць. Уласцівасці М. характарызуюцца іх месцам у [[Электрахіміны рад напружанняў металаў|электрахімічным радзе]]. М. ад [[Літый|Li]] да [[Натрый|Na]] выцясняюць [[вадарод]] з [[Вада|вады]] пры [[Нармальныя ўмовы|нармальных умовах]], а ад [[Магній|Mg]] да [[Талій|Tl]] — пры награванні. М., якія стаяць у [[Электрахіміны рад напружанняў металаў|электрахімічным радзе]] перад [[вадарод]]ам, выцясняюць яго з разбаўленых [[Кіслата|кіслотаў]] (на холадзе або пры награванні). М., якія стаяць у [[Электрахіміны рад напружанняў металаў|электрахімічным радзе]] пасля [[вадарод]]у, раствараюцца толькі ў [[Кіслата|кіслародных кіслотах]] (канцэнтраваная [[Серная кіслата|H2SO4]] ці [[Азотная кіслата|HNO3]]), а [[Плаціна|Pt]], [[Золата|Au]] — толькі ў [[Сумесь|сумесі]] гэтых [[Кіслата|кіслотаў]]. [[Аксід]]ы М. ад [[Літый|Li]] да [[Алюміній|Al]] і ад [[Лантан|La]] да [[Цынк|Zn]] [[Аднаўленне|аднаўляюцца]] цяжка, бліжэй да канца [[Электрахіміны рад напружанняў металаў|рада]] схільнасць да [[Аднаўленне|аднаўлення]] павялічваецца, [[аксід]]ы апошніх у [[Электрахіміны рад напружанняў металаў|радзе]] М. распадаюцца на М. і [[кісларод]] ужо пры невялікім награванні.
[[Ступень акіслення|Ступені акіслення]] непераходных М.: +1 для падгрупы I а; +2 для II a; +1 і +3 для III a; +2 і +4 для IV a; +2, +3 і +5 для V a; — 2, +2, +4, +6 для VI a. У пераходных М.: +1, +2, +3 для падгрупы I б, +2 для II б; +3 для III б; +2, +3, +4 для IV б; +2, +3, +4, +5 для V б; +2, +3, +4, +5, +6 для VI б, +2, +3, +4, +5, +6, +7 для VII б, от +2 до +8 в VIII б. У [[Лантаноіды|лантаноідаў]]: +2, +3 и +4, у [[Актыноіды|актыноідаў]] — ад +3 да +6. [[Аксід]]ы М. з малой [[Ступень акіслення|ступенню акіслення]] маюць [[Аснова|асноўныя ўласцівасці]], [[аксід]]ы з высокай [[Ступень акіслення|ступенню акіслення]] з’яўляюцца [[ангідрыд]]амі [[Кіслата|кіслотаў]]. М. з пераменнаю [[Валентнасць|валентнасцю]] (напрыклад, [[Хром|Cr]], [[Марганец|Mn]], [[Жалеза|Fe]]), у [[Складаныя рэчывы|злучэннях]], дзе яны маюць нізкія [[Ступень акіслення|ступені акіслення]], ([[Хром|Cr]] (+2), [[Марганец|Mn]] (+2), [[Жалеза|Fe]] (+2)), выяўляюць [[Аднаўленне|аднаўленчыя ўласцівасці]], а ў [[Складаныя рэчывы|злучэннях]], дзе яны маюць вышэйшыя [[Ступень акіслення|ступені акіслення]] ([[Хром|Cr]] (+6), [[Марганец|Mn]] (+7), [[Жалеза|Fe]] (+3)) уласцівасці [[Акісленне|акісляльныя]].
[[Ступень акіслення|Ступені акіслення]] непераходных М.: +1 для падгрупы I а; +2 для II a; +1 і +3 для III a; +2 і +4 для IV a; +2, +3 і +5 для V a; — 2, +2, +4, +6 для VI a. У пераходных М.: +1, +2, +3 для падгрупы I б, +2 для II б; +3 для III б; +2, +3, +4 для IV б; +2, +3, +4, +5 для V б; +2, +3, +4, +5, +6 для VI б, +2, +3, +4, +5, +6, +7 для VII б, от +2 до +8 в VIII б. У [[Лантаноіды|лантаноідаў]]: +2, +3 и +4, у [[Актыноіды|актыноідаў]] — ад +3 да +6. [[Аксід]]ы М. з малой [[Ступень акіслення|ступенню акіслення]] маюць [[Аснова|асноўныя ўласцівасці]], [[аксід]]ы з высокай [[Ступень акіслення|ступенню акіслення]] з'яўляюцца [[ангідрыд]]амі [[Кіслата|кіслотаў]]. М. з пераменнаю [[Валентнасць|валентнасцю]] (напрыклад, [[Хром|Cr]], [[Марганец|Mn]], [[Жалеза|Fe]]), у [[Складаныя рэчывы|злучэннях]], дзе яны маюць нізкія [[Ступень акіслення|ступені акіслення]], ([[Хром|Cr]] (+2), [[Марганец|Mn]] (+2), [[Жалеза|Fe]] (+2)), выяўляюць [[Аднаўленне|аднаўленчыя ўласцівасці]], а ў [[Складаныя рэчывы|злучэннях]], дзе яны маюць вышэйшыя [[Ступень акіслення|ступені акіслення]] ([[Хром|Cr]] (+6), [[Марганец|Mn]] (+7), [[Жалеза|Fe]] (+3)) уласцівасці [[Акісленне|акісляльныя]].


Здольнасць М. да ўтварэння [[Складаныя рэчывы|злучэнняў]] і [[Палімарфізм|паліморфных пераходаў]] стварае аснову для атрымання шмаатлікіх [[Сплаў|спаваў]] з разнастайнымі карыснымі ўласцівасцямі. Колькасць вядомых [[Сплаў|спаваў]] перавысіла 10 000.
Здольнасць М. да ўтварэння [[Складаныя рэчывы|злучэнняў]] і [[Палімарфізм|паліморфных пераходаў]] стварае аснову для атрымання шмаатлікіх [[Сплаў|спаваў]] з разнастайнымі карыснымі ўласцівасцямі. Колькасць вядомых [[Сплаў|спаваў]] перавысіла 10 000.


== Гісторыя ==
== Гісторыя ==
Назоў «метал» паходзіць ад грэчаскага métallon (ад metalléuo — выкапваю, здабываю з зямлі), якое спачатку азначала копі, руднікі (у [[Герадот|Геродота]], [[5 ст. да н.э.]]). У старажытнасці і сярэднявеччы лічылі, што ёсць 7 М.: [[золата]], [[серабро]], [[медзь]], [[волава]], [[свінец]], [[жалеза]], [[ртуць]]. М. В. Ламаносаў налічваў 6 М. ([[Золата|Au]], [[Серабро|Ag]], [[Медзь|Cu]], [[Волава|Sn]], [[Жалеза|Fe]], [[Свінец|Pb]]) і вызначаў М. як «светлое тело, которое ковать можно». У 1-й палове [[19 ст.]] былі атрыманыя М. платынавай групы, [[Шчолачныя металы|Шчолачныя]] і [[Шчолачназямельныя металы|шчолачназямельныя]] М., адкрытыя невядомыя М. пры [[Хімічны аналіз|хімічным аналізе]] [[мінерал]]аў. В 1860—63 метадам [[Спектральны аналіз|спектральнага аналізу]] былі адкрыты [[Цэзій|Cs]], [[Рубідый|Rb]], [[Талій|Tl]], [[Індый|In]]. У другой палове [[20 ст.]] былі штучна атрыманыя [[Радыеактыўнасць|радыеактыўныя]] М., у прыватнасці, [[трансураніды]].

Назоў «метал» паходзіць ад грэчаскага métallon (ад metalléuo — выкапваю, здабываю з зямлі), якое спачатку азначала копі, руднікі (у [[Герадот|Геродота]], [[5 ст. да н.э.]]). У старажытнасці і сярэднявеччы лічылі, што ёсць 7 М.: [[золата]], [[серабро]], [[медзь]], [[волава]], [[свінец]], [[жалеза]], [[ртуць]]. М. В. Ламаносаў налічваў 6 М. ([[Золата|Au]], [[Серабро|Ag]], [[Медзь|Cu]], [[Волава|Sn]], [[Жалеза|Fe]], [[Свінец|Pb]]) і вызначаў М. як «светлое тело, которое ковать можно». У 1-й палове [[19 ст.]] былі атрыманыя М. платынавай групы, [[Шчолачныя металы|Шчолачныя]] і [[Шчолачназямельныя металы|шчолачназямельныя]] М., адкрытыя невядомыя М. пры [[Хімічны аналіз|хімічным аналізе]] [[мінерал]]аў. В 1860—63 метадам [[Спектральны аналіз|спектральнага аналізу]] былі адкрытыя [[Цэзій|Cs]], [[Рубідый|Rb]], [[Талій|Tl]], [[Індый|In]]. У другой палове [[20 ст.]] былі штучна атрыманыя [[Радыеактыўнасць|радыеактыўныя]] М., у прыватнасці, [[трансураніды]].


М. і іх [[Сплаў|сплавы]] шырока выкарыстоўваюцца ў розных галінах вытворчасці, перш за ўсё як канструкцыйны матэрыял.
М. і іх [[Сплаў|сплавы]] шырока выкарыстоўваюцца ў розных галінах вытворчасці, перш за ўсё як канструкцыйны матэрыял.

Версія ад 12:49, 7 ліпеня 2013

Метал (мн. лік “металы”; ад лац.: metallum — шахта) – простае рэчыва, атамы якіх вызначаюцца здольнасцю аддаваць валентныя электроны і пераходзіць у дадатна зараджаныя іоны. Абагуленыя валентныя электроны свабодна перамяшчаюцца ў крысталічнай рашотцы, забяспечваючы сувязь паміж атамамі. Структура М. апісваецца зоннай теорыяй.

Большасць (больш за 85) вядомых хімічных элементаў – М. і толькі каля 22 — неметалы.

Адрозніваюць М. галоўных і пабочных падгруп Перыядычнай сістэмы. М. галоўных падгруп завуцца непераходнымі, у іх атамах адбываецца запаўненне s- і р-электронных абалонак. М. пабочных падгруп завуцца пераходнымі, у іх дабудоўваюцца d- і f-абалонкі, у адпаведнасці з чым яны падзяляюцца на d-групу и дзве f-групы — лантаноіды и актыноіды.

Фізічныя ўласцівасці

М. вызначаюцца высокай электра- і цеплаправоднасцю, здольнасцью адбіваць светлавыя хвалі, пластычнацю. У цвёрдым выглядзе звычайна маюць крышталічную будову. Большасць М. крышталізуецца ў простых структурах (кубічных і гексаганальных) якія адпавядаюць найшчыльнейшай кампаноўцы атамаў. Шмат М. могуць існаваць у дзвюх і больш крышталічных мадыфікацыях (гл. Палімарфізм). Паліморфныя пераходы часам спалучаюцца са стратай металічных уласцівасцей (напрыклад, пераход белага волава (b-Sn) ў шэрае (a-Sn).

Цвёрдасць некаторых металаў па шкале Моаса:[1]

Цвёрдасць Метал
0.2 Цэзій
0.3 Рубідый
0.4 Калій
0.5 Натрый
0.6 Літый
1.2 Індый
1.2 Талій
1.25 Барый
1.5 Стронцый
1.5 Галій
1.5 Волава
1.5 Свінец
1.5 Ртуць(цв.)
1.75 Кальцый
2.0 Кадмій
2.25 Вісмут
2.5 Магній
2.5 Цынк
2.5 Лантан
2.5 Серабро
2.5 Золата
2.59 Ітрый
2.75 Алюміній
3.0 Медзь
3.0 Сурма
3.0 Торый
3.17 Скандый
3.5 Плаціна
3.75 Кобальт
3.75 Паладый
3.75 Цырконій
4.0 Жалеза
4.0 Нікель
4.0 Гафній
4.0 Марганец
4.5 Ванадый
4.5 Малібдэн
4.5 Родый
4.5 Тытан
4.75 Ніёбій
5.0 Ірыдый
5.0 Рутэній
5.0 Тантал
5.0 Тэхнецый
5.0 Хром
5.5 Берылій
5.5 Осмій
5.5 Рэній
6.0 Вальфрам
6.0 β-Уран

Хімічныя ўласцівасці

Агульныя для М. хімічныя ўласцівасці абумоўленыя слабой сувяззю валентных электронаў з ядром атама: утварэнне дадатна зараджаных іонаў (катыёнаў), станоўчая ступень акіслення ў злучэннях, утварэнне асновных аксідаў і гідраксідаў, выцясненне вадароду з кіслотаў і г.д.

Металічныя ўласцівасці элемента праяўляюцца тым яскравей, чым, ніжэй яго электраадмоўнасць. У падгрупах Перыядычнай сістэмы з узрастаннем атамнага нумару электраадмоўнасць у цэлым змяншаецца, а металічныя ўласцівасці ўзрастаюць.

М. ад Li да Na лёгка рэагуюць з кіслародам на холадзе, іншыя злучаюцца з кіслародам толькі пры награванні, а Ir, Pt, Au з кіслародам не ўзаемадзейнічаюць. Уласцівасці М. характарызуюцца іх месцам у электрахімічным радзе. М. ад Li да Na выцясняюць вадарод з вады пры нармальных умовах, а ад Mg да Tl — пры награванні. М., якія стаяць у электрахімічным радзе перад вадародам, выцясняюць яго з разбаўленых кіслотаў (на холадзе або пры награванні). М., якія стаяць у электрахімічным радзе пасля вадароду, раствараюцца толькі ў кіслародных кіслотах (канцэнтраваная H2SO4 ці HNO3), а Pt, Au — толькі ў сумесі гэтых кіслотаў. Аксіды М. ад Li да Al і ад La да Zn аднаўляюцца цяжка, бліжэй да канца рада схільнасць да аднаўлення павялічваецца, аксіды апошніх у радзе М. распадаюцца на М. і кісларод ужо пры невялікім награванні. Ступені акіслення непераходных М.: +1 для падгрупы I а; +2 для II a; +1 і +3 для III a; +2 і +4 для IV a; +2, +3 і +5 для V a; — 2, +2, +4, +6 для VI a. У пераходных М.: +1, +2, +3 для падгрупы I б, +2 для II б; +3 для III б; +2, +3, +4 для IV б; +2, +3, +4, +5 для V б; +2, +3, +4, +5, +6 для VI б, +2, +3, +4, +5, +6, +7 для VII б, от +2 до +8 в VIII б. У лантаноідаў: +2, +3 и +4, у актыноідаў — ад +3 да +6. Аксіды М. з малой ступенню акіслення маюць асноўныя ўласцівасці, аксіды з высокай ступенню акіслення з'яўляюцца ангідрыдамі кіслотаў. М. з пераменнаю валентнасцю (напрыклад, Cr, Mn, Fe), у злучэннях, дзе яны маюць нізкія ступені акіслення, (Cr (+2), Mn (+2), Fe (+2)), выяўляюць аднаўленчыя ўласцівасці, а ў злучэннях, дзе яны маюць вышэйшыя ступені акіслення (Cr (+6), Mn (+7), Fe (+3)) уласцівасці акісляльныя.

Здольнасць М. да ўтварэння злучэнняў і паліморфных пераходаў стварае аснову для атрымання шмаатлікіх спаваў з разнастайнымі карыснымі ўласцівасцямі. Колькасць вядомых спаваў перавысіла 10 000.

Гісторыя

Назоў «метал» паходзіць ад грэчаскага métallon (ад metalléuo — выкапваю, здабываю з зямлі), якое спачатку азначала копі, руднікі (у Геродота, 5 ст. да н.э.). У старажытнасці і сярэднявеччы лічылі, што ёсць 7 М.: золата, серабро, медзь, волава, свінец, жалеза, ртуць. М. В. Ламаносаў налічваў 6 М. (Au, Ag, Cu, Sn, Fe, Pb) і вызначаў М. як «светлое тело, которое ковать можно». У 1-й палове 19 ст. былі атрыманыя М. платынавай групы, Шчолачныя і шчолачназямельныя М., адкрытыя невядомыя М. пры хімічным аналізе мінералаў. В 1860—63 метадам спектральнага аналізу былі адкрыты Cs, Rb, Tl, In. У другой палове 20 ст. былі штучна атрыманыя радыеактыўныя М., у прыватнасці, трансураніды.

М. і іх сплавы шырока выкарыстоўваюцца ў розных галінах вытворчасці, перш за ўсё як канструкцыйны матэрыял.

Гл. таксама

Зноскі

  1. Поваренных А. С. Твердость минералов. — АН УССР, 1963. — С. 197-208. — 304 с.

Шаблон:Шэраг актыўнасці металаў Шаблон:Групы хімічных элементаў

Шаблон:Link GA