Вектар, матэматыка

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці
Вектар

Вектар — накіраваны прасталінейны адрэзак, г.зн. адрэзак які мае вызначаную даўжыню і вызначаны кірунак.

Нататка: вектары могуць пазначацца, як альбо . Памятайце, што гэта адзінае.

Геаметрычнае ўяўленне[правіць | правіць зыходнік]

Калі - пачатак, а - канчатак, тады ці - вектар. Вектар завецца процілеглым вектару . Вектар процілеглы вектару вызначаецца .

Даўжынёй ці модулем вектару завецца даўжыня адрэзка і пазначаецца . Вектар, даўжыня якога роўная нулю завецца нулявым вектарам і вызначаецца . Нулявы вектар не мае кірунку.

Вектар, даўжыня якога роўная адзінцы, завецца адзінкавым вектарам і азначаецца . Адзінкавы вектар, кірунак якога супадае з вектарам завецца ортам вектара і вызначаецца .
Вектары і завуцца калінеарнымі калі яны знаходзяцца на адзінай прамой ці на роўналежных прамых. Натуецца .
Калінеарныя вектары могуць быць накіраваныя аднолькава ці процілегла.
Нулявы вектар лічыцца калінеарным любому вектару.
Тры вектары завуцца кампланарнымі калі яны ляжаць у адной плоскасці ці ў паралельных плоскасцях. Калі сярод іх адзін вектар нулявы ці два іншых калінеарны, такія вектары таксама кампланарныя.

Алгебраічнае ўяўленне[правіць | правіць зыходнік]

У лінейнай алгебры вектар - гэта элемент вектарнай прасторы (або інакш: лінейнай прасторы). Вектары лiнейнай прасторы можна складаць і памнажаць на лік. Вектар таксама можна ўявіць у выглядзе лінейнай камбінацыі іншых вектараў. Базіс - гэта лінейна незалежная сукупнасць вектараў, якая спараджае ўсю прастору. У канечнамернай прасторы існуе канчатковы базіс, і тады любы вектар прасторы можа быць адзіным чынам прадстаўлены ў выглядзе раскладання выгляду

дзе - гэта базіс, а - каардынаты вектара у зададзеным базісе.

Спасылкі[правіць | правіць зыходнік]