Фундаментальная паслядоўнасць
Выгляд
Фундамента́льная паслядо́ўнасць, або паслядо́ўнасць Кашы́ — паслядоўнасць пунктаў метрычнай прасторы, такая што для любой зададзенай адлегласці існуе элемент паслядоўнасці, пачынаючы з якога ўсе элементы паслядоўнасці знаходзяцца адзін ад аднаго на адлегласці, меншай чым зададзеная.
Азначэнне
[правіць | правіць зыходнік]Паслядоўнасць пунктаў метрычнае прасторы называецца фундаментальнаю, калі яна задавальняе ўмову Кашы:
для любога існуе такі натуральны лік , што для ўсіх . |
Звязаныя азначэнні
[правіць | правіць зыходнік]- Прастора, ў якой кожная фундаментальная паслядоўнасць збягаецца да элемента гэтай жа прасторы, называецца поўнаю.
Уласцівасці
[правіць | правіць зыходнік]- Кожная збежная паслядоўнасць з'яўляецца фундаментальнай, але не кожная фундаментальная паслядоўнасць збягаецца да элемента са сваёй прасторы.
- Метрычная прастора з'яўляецца поўнаю тады і толькі тады, калі ўсякая сістэма ўкладзеных замкнутых шароў з неабмежавана ўбываючым радыусам мае непустое перасячэнне, якое складаецца з аднаго пункта.
- Калі паслядоўнасць фундаментальная і ўтрымлівае збежную падпаслядоўнасць, то сама паслядоўнасць таксама збягаецца.
- Калі паслядоўнасць фундаментальная, то яна абмежавана.
Літаратура
[правіць | правіць зыходнік]- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа, — М.: Наука, 2004. — 7-е изд.
- Шилов Г. Е. Математический анализ. Функции одного переменного. Ч.3, — М.:Наука, 1970.