Магнітная індукцыя: Розніца паміж версіямі

З Вікіпедыі, свабоднай энцыклапедыі
[недагледжаная версія][недагледжаная версія]
Змесціва выдалена Змесціва дададзена
др →‎У агульным выпадку: пунктуацыя
Радок 56: Радок 56:


* Тры з чатырох [[Ураўненні Максвела|ураўненняў Максвела]] (асноўных ураўненняў электрадынамікі)
* Тры з чатырох [[Ураўненні Максвела|ураўненняў Максвела]] (асноўных ураўненняў электрадынамікі)
*: <math>\mathrm{div}\,\vec E = \frac{\rho}{\varepsilon_0}\ \ \
*: <math>\mathrm{div}\,\vec E = \frac{\rho}{\varepsilon_0},\ \ \
\mathrm{rot}\,\vec E = - \frac{\partial \vec B}{\partial t}
\mathrm{rot}\,\vec E = - \frac{\partial \vec B}{\partial t},
</math>
</math>
*: <math>\mathrm{div}\,\vec B = 0\ \ \ \ \,
*: <math>\mathrm{div}\,\vec B = 0,\ \ \ \ \,
\mathrm{rot}\,\vec B = \mu_0\vec j +
\mathrm{rot}\,\vec B = \mu_0\vec j +
\frac{1}{c^2}\frac{\partial \vec E}{\partial t}
\frac{1}{c^2}\frac{\partial \vec E}{\partial t},
</math>
</math>
** а менавіта:
** а менавіта:

Версія ад 18:12, 13 студзеня 2018

Магнітная індукцыя
Адзінкі вымярэння
СІ Тл
СГС Гс
Заўвагі
Вектарная велічыня
Электрадынаміка
Электрычнасць · Магнетызм

Магнітная індукцыя  — вектарная велічыня, якая з’яўляецца сілавой характарыстыкай магнітнага поля (яго дзеяння на зараджаныя часціцы) у дадзенам пункце прасторы. Вызначае, з якой сілай магнітнае поле дзейнічае на зарад , які рухаецца са скорасцю .

Больш канкрэтна,  — гэта такі вектар, што сіла Лорэнца , якая дзейнічае з боку магнітнага поля[1] на , які рухаецца са скорасцю , роўная

дзе касым крыжам абазначаны вектарны здабытак, α — вугал паміж вектарамі скорасці і магнітнай індукцыі (вектар перпендыкулярны ім абодвум і накіраваны па правілу свярдзёлка).

Таксама магнітная індукцыя можа быць вызначана[2] як адносіна максімальнага механічнага моманту сіл, якія дзейнічаюць на рамку з токам, змешчаную ў аднароднае поле, да здабытку сілы току ў рамцы на яе плошчу.

З’яўляецца асноўнай фундаментальнай характарыстыкай магнітнага поля, аналагічнай вектару напружанасці электрычнага поля.

У сістэме СГС магнітная індукцыя поля вымяраецца ў Гаўсах (Гс), у сістэме СІ — у Тэслах (Тл)

1 Тл = 104 Гс

Магнітометры, якія прымяняюцца для вымярэння магнітнай індукцыі, называюць тэсламетрамі.

Асноўныя ўраўненні

Паколькі вектар магнітнай індукцыі з’яўляецца адной з асноўных фундаментальных фізічных велічынь у тэорыі электрамагнетызму, ён уваходзіць у велізарнае мноства ўраўненняў, часам непасрэдна, часам праз звязаную з ім напружанасць магнітнага поля. Па сутнасці, адзіная вобласць у класічнай тэорыі электрамагнетызму, дзе ён адсутнічае, гэта мабыць хіба толькі чыстая электрастатыка.

  • (Тут формулы прывядзём у сістэме адзінак СІ, у выглядзе для вакууму[3], дзе ёсць варыянты для вакууму — для асяроддзя; запіс у іншым выглядзе і падрабязнасці — гл. па спасылках).

У магнітастатыцы

У магнітастатычным гранічным выпадку[4] найбольш важнымі з’яўляюцца:

  • Закон Біё-Савара, які займае ў магнітастатыцы месца, якое займае ў электрастатыцы закон Кулона:
  • Тэарэма Ампера пра цыркуляцыю магнітнага поля[5]:

У агульным выпадку

Асноўныя ўраўненні (класічнай) электрадынамікі агульнага выпадку (гэта значыць незалежна ад абмежаванняў магнітастатыкі), у якіх удзельнічае вектар магнітнай індукцыі :

  • Тры з чатырох ураўненняў Максвела (асноўных ураўненняў электрадынамікі)
    • а менавіта:
    • Закон Гаўса для магнітнага поля,
    • Закон электрамагнітнай індукцыі:
    • Закон Ампера — Максвела:
  • Формула сілы Лорэнца
    • Следства з яе, такія як
      • Выраз для сілы Ампера, што дзейнічае з боку магнітнага поля на ток (участак дроту з токам)
      • Выраз для круцільнага моманту, дзеючага з боку магнітнага поля на магнітны дыполь (віток з токам, катушку або пастаянны магніт):
      • Выраз для патэнцыяльнай энергіі магнітнага дыполя ў магнітным полі:
      • А таксама вынікаючых з іх выразаў для сілы, якая дзейнічае на магнітны дыполь у неаднародным магнітным полі і г. д..
      • Выраз для сілы, якая дзейнічае з боку магнітнага поля на кропкавы магнітны зарад:
        • (Гэты выраз, дакладна адпаведны звычайнаму закону Кулона, шырока выкарыстоўваецца для фармальных вылічэнняў, для якіх каштоўная яго прастата, нягледзячы на тое, што рэальных магнітных зарадаў у прыродзе не выяўлена; таксама можа прама прымяняцца да вылічэння сілы, якая дзейнічае з боку магнітнага поля на полюс доўгага тонкага магніта або саленоіда).
  • Выраз для шчыльнасці энергіі магнітнага поля
    • Ён ў сваю чаргу ўваходзіць (разам з энергіяй электрычнага поля) і ў выраз для энергіі электрамагнітнага поля і ў лагранжыян электрамагнітнага поля і ў яго дзеянне. Апошняе ж з сучаснага пункту гледжання з’яўляецца фундаментальнай асновай электрадынамікі (як класічнай, так у прынцыпе і квантавай).

Гл. таксама

Зноскі

  1. Калі ўлічваць і дзеянне электрычнага поля E, то формула (поўнай) сілы Лорэнца прымае выгляд:
    Пры адсутнасці электрычнага поля (ці калі член, які апісвае яго дзеянне, спецыяльна адняць з поўнай сілы) маем формулу, прыведзеную ў асноўным тэксце.
  2. Гэтае азначэнне з сучаснага пункту гледжання менш фундаментальнае, чым прыведзенае вышэй (і з’яўляецца проста яго следствам), аднак з пункту гледжання блізкасці да аднаго з практычных спосабаў вымярэння магнітнай індукцыі можа быць карысным, таксама і з гістарычнага пункту гледжання.
  3. Гэта значыць, у найбольш фундаментальным і простым для азнаямлення выглядзе.
  4. Гэта значыць, у прыватным выпадку пастаянных токаў і пастаянных электрычнага і магнітнага палёў або — набліжана — калі змены настолькі павольныя, што іх можна не ўлічваць.
  5. Яна з’яўляецца асобным магнітастатычным выпадкам закона Ампера — Максвела.