Трохвугольнік

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці
Стандартныя абазначэнні

Трохвуго́льнікгеаметрычная фігура, утвораная трыма адрэзкамі, якія злучаюць тры пункты, што не ляжаць на адной прамой. Гэтыя адрэзкі называюцца старанамі (бакамі) трохвугольніка, а пункты, злучаныя старанамі, — яго вяршынямі.

Трохвугольнік — найпрасцейшы з многавугольнікаў.

Вяршыні трохвугольніка звычайна абазначаюцца вялікімі лацінскімі літарамі (A, B, C), велічыні вуглоў пры адпаведных вяршынях — грэчаскімі літарамі (α, β, γ), а даўжыні процілеглых старон — маленькімі лацінскімі літарамі (a, b, c).

Трохвугольнік з'яўляецца шматграннікам. У еўклідавай геаметрыі трохвугольнік адназначна задае плоскасць. Усе трохвугольнікі з'яўляюцца плоскімі фігурамі.

Класіфікацыя трохвугольнікаў[правіць | правіць зыходнік]

Віды трохвугольнікаў паводле велічыні вуглоў
Востравугольны трохвугольнік
Востравугольны
Тупавугольны трохвугольнік
Тупавугольны
Прамавугольны трохвугольнік
Прамавугольны

Паводле велічыні вуглоў[правіць | правіць зыходнік]

Раз сума вуглоў трохвугольніка роўная 180°, то не менш чым два вуглы ў трохвугольніку павінны быць вострымі (меншымі за 90°). Вылучаюць наступныя віды трохвугольнікаў:

  • Калі ўсе вуглы трохвугольніка вострыя, то трохвугольнік завецца востравугольным;
  • Калі адзін з вуглоў трохвугольніка тупы (большы за 90°), то трохвугольнік завецца тупавугольным;
  • Калі адзін з вуглоў трохвугольніка прамы (роўны 90°), то трохвугольнік завецца прамавугольным. Дзве стараны, якія ўтвараюць прамы вугал, завуцца катэтамі, а старана, процілеглая прамому вуглу, завецца гіпатэнузай.
Віды трохвугольнікаў паводле колькасці роўных старон
Рознастаронні трохвугольнік
Рознастаронні
Раўнабедраны трохвугольнік
Раўнабедраны
Роўнастаронні трохвугольнік
Роўнастаронні

Паводле колькасці роўных старон[правіць | правіць зыходнік]

  • Рознастароннім называецца трохвугольнік, у якога даўжыні старон папарна розныя.
  • Раўнабедраным завецца трохвугольнік, у якога дзве стараны роўныя. Гэтыя стораны завуцца бакавымі, трэцяя старана завецца асновай. У раўнабедраным трохвугольніку вуглы пры аснове роўныя. Вышыня, медыяна і бісектрыса раўнабедранага трохвугольніка, апушчаныя на аснову, супадаюць.
  • Роўнастароннім завецца трохвугольнік, у якога ўсе тры стараны роўныя. У роўнастароннім трохвугольніку ўсе вуглы роўныя 60°, а цэнтры упісанай і апісанай акружнасцей супадаюць.

Няроўнасць трохвугольніка[правіць | правіць зыходнік]

Стораны трохвугольніка нельга задаваць адвольна, яны звязаныя наступнымі няроўнасцямі

  • a<b+c
  • b<c+a
  • c<a+b

Калі хаця б у адной з гэтых суадносін мае месца роўнасць, трохвугольнік называецца выраджаным. Далей усюды маецца на ўвазе нявыраджаны выпадак.

Прыкметы роўнасці трохвугольнікаў[правіць | правіць зыходнік]

Трохвугольнік адназначна можна вызначыць па наступных тройках асноўных элементаў:

  • a, b, c (роўнасць па трох старанах);
  • a, b, γ (роўнасць па дзвюх старанах і вуглу паміж імі);
  • a, β, γ (роўнасць па старане і двух прылеглых вуглах).

Адрэзкі і акружнасці, звязаныя з трохвугольнікам[правіць | правіць зыходнік]

Акружнасць, датычная ўсіх трох старон трохвугольніка, завецца яго упісанай акружнасцю. Яна вызначана адназначна. Акружнасць, якая праходзіць праз усе тры вяршыні трохвугольніка, завецца яго апісанай акружнасцю. Апісаная акружнасць таксама вызначана адназначна.

Медыянай трохвугольніка, праведзенай з дадзенай вяршыні, завецца адрэзак, які злучае гэту вяршыню з сярэдзінай процілеглай стараны. Усе тры медыяны трохвугольніка перасякаюцца ў адным пункце. Гэты пункт перасячэння называецца цэнтроідам або цэнтрам цяжару трохвугольніка. Апошняя назва звязана з тым, што ў трохвугольніка, зробленага з аднароднага матэрыялу, цэнтр цяжару знаходзіцца ў пункце перасячэння медыян. Цэнтроід дзеліць кожную медыяну ў адносіне 1:2, калі лічыць ад асновы медыяны.

Перпендыкуляр, апушчаны з вяршыні трохвугольніка на процілеглую старану або яе працяг, завецца вышынёй трохвугольніка. Тры вышыні трохвугольніка перасякаюцца ў адным пункце, які называецца ортацэнтрам трохвугольніка.

Бісектрысай трохвугольніка, праведзенай з дадзенай вяршыні, завуць адрэзак, які злучае гэту вяршыню з пунктам на процілеглай старане і дзеліць вугал пры дадзенай вяршыні папалам. Бісектрысы трохвугольніка перасякаюцца ў адным пункце, і гэты пункт супадае з цэнтрам упісанай акружнасці.

У раўнабедраным трохвугольніку бісектрыса, медыяна і вышыня, праведзеныя да асновы, супадаюць. Справядліва і адваротнае: калі бісектрыса, медыяна і вышыня, праведзеныя з адной вяршыні, супадаюць, то трохвугольнік раўнабедраны. Калі трохвугольнік рознастаронні, то для любой яго вяршыні бісектрыса, праведзеная з яе, ляжыць паміж медыянай і вышынёй, праведзенымі з той жа вяршыні.

Сярэдзінныя перпендыкуляры да старон трохвугольніка таксама перасякаюцца ў адным пункце, які супадае з цэнтрам апісанай акружнасці.

Пазаўпісанай акружнасцю завецца акружнасць, датычная аднае стараны трохвугольніка і працягу дзвюх іншых старон.

Сярэдзіны трох старон трохвугольніка, асновы трох яго вышынь і сярэдзіны трох адрэзкаў, якія злучаюць яго вяршыні з артацэнтрам, ляжаць на адной акружнасці, якая называецца акружнасцю дзевяці пунктаў.

У любым трохвугольніку цэнтр цяжару, артацэнтр, цэнтр апісанай акружнасці і цэнтр акружнасці дзевяці пунктаў ляжаць на адной прамой, якая называецца прамою Эйлера.

Суадносіны ў трохвугольніку[правіць | правіць зыходнік]

Калі вядомыя тры велічыні з шасці (тры стараны і тры вуглы), то астатнія можна знайсці па наступных формулах:

Тэарэма сінусаў[правіць | правіць зыходнік]

Справядлівыя наступныя суадносіны паміж даўжынямі старон і сінусамі адпаведных процілеглых вуглоў:

\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R,

дзе R — радыус апісанай акружнасці.

Гэтыя суадносіны называюцца тэарэмаю сінусаў. Сярод іншага, з тэарэмы вынікае, што калі a < b < c, то α < β < γ.

Тэарэма косінусаў[правіць | правіць зыходнік]

Ведаючы дзве стараны трохвугольніка і вугал паміж імі, можна вылічыць трэцюю старану па формуле:

c2 = a2 + b2 — 2ab cos γ.

Гэта формула называецца тэарэмаю косінусаў і з'яўляецца абагульненнем тэарэмы Піфагора.

Тэарэма пра суму вуглоў трохвугольніка[правіць | правіць зыходнік]

Сума вуглоў любога трохвугольніка раўняецца 180° (π радыян):

α + β + γ = 180° (π)

Гэта сцвярджэнне раўназначнае аксіёме паралельнасці Еўкліда.

Іншыя суадносіны[правіць | правіць зыходнік]

Метрычныя суадносіны ў трохвугольніку, прыведзеныя для трохвугольніка \triangle ABC:

{a\over b}={a_L\over b_L}
l_c = {\sqrt{ab(a+b+c)(a+b-c)}\over{a+b}} = \sqrt{ab-a_Lb_L} 
= \frac {2ab\cos\frac{\gamma}{2}}{a+b}
m_c = {1 \over 2}\sqrt{2(a^2+b^2)-c^2}
h_c = b\sin\alpha = a\sin\beta = \frac {2S}{c}
\ d^2 = R^2 - 2Rrформула Эйлера
\frac {r}{R} = 4\sin\frac {\alpha}{2}\sin\frac {\beta}{2}\sin\frac {\gamma}{2} 
= \cos\alpha + \cos\beta + \cos\gamma - 1

Дзе:

\ l_a, l_b, l_c — адпаведна бісектрысы вуглоў A, B і C,
\ a_L, b_L — адрэзкі, на якія бісектрысы \ l_c дзеліць старану \ c,
\ m_a, m_b, m_c — медыяны, праведзеныя адпаведна да старон a, b і c,
\ h_a, h_b, h_c — вышыні, апушчаныя адпаведна на стораны a, b і c,
\ r — радыус упісанай акружнасці,
\ R — радыус апісанай акружнасці,
p=\frac {a+b+c}{2} — паўперыметр,
\ S — плошча,
\ d — адлегласць паміж цэнтрамі ўпісанай і апісанай акружнасцей.

Плошча трохвугольніка[правіць | правіць зыходнік]

Найвядомейшая і найпрасцейшая формула:

S=\frac{1}{2}bh_b

Дзе:

\ b — даўжыня асновы трохвугольніка (старана, да якой праведзены перпендыкуляр)
\ h_b — вышыня, праведзеная да стараны \ b,

Гэтай формулай зручна карыстацца, калі можна лёгка знайсці вышыню.

Трыганаметрычны спосаб вылічэння вышыні h.

Трыганаметрычны спосаб[правіць | правіць зыходнік]

Вышыню трохвугольніка можна вылічыць з выкарыстаннем трыганаметрычных формул. У адпаведнасці з абазначэннямі на выяве злева, вышыня роўная \ h_b = a \sin \gamma. Калі падставіць вышыню ў формулу S= \frac{1}{2}bh_b, атрымаем:

S =  \frac{1}{2}ab\sin \gamma = \frac{1}{2}bc\sin \alpha  = \frac{1}{2}ca\sin \beta.

Акрамя таго, \sin \alpha = \sin ( \pi - \alpha ) = \sin (\beta + \gamma),, што справядліва і для іншых двух вуглоў:

S = \frac{1}{2}ab\sin (\alpha+\beta) = \frac{1}{2}bc\sin (\beta+\gamma) = \frac{1}{2}ca\sin (\gamma+\alpha).

З выкарыстаннем вектараў[правіць | правіць зыходнік]

Плошчу паралелаграма можна вылічыць з дапамогай вектараў. Няхай вектары AB і AC накіраваны адпаведна ад A да B і ад A да C. Тады плошча паралелаграма ABDC роўная |AB × AC|, г.зн. лікаваму значэнню вектарнага здабытка AB і AC. |AB × AC| роўны h · AC, дзе h — вышыня паралелаграма.

Плошча трохвугольніка ABC роўная палове плошчы паралелаграма S = ½|AB × AC|.

Плошчу трохвугольніка ABC таксама можна вылічыць як скалярны здабытак вектараў.


\frac{1}{2} \sqrt{(\mathbf{AB} \cdot \mathbf{AB})(\mathbf{AC} \cdot \mathbf{AC}) -(\mathbf{AB} \cdot \mathbf{AC})^2} =\frac{1}{2} \sqrt{ |\mathbf{AB}|^2 |\mathbf{AC}|^2 -(\mathbf{AB} \cdot \mathbf{AC})^2} \,.

Выкарыстанне каардынат[правіць | правіць зыходнік]

Калі пункт А размешчаны ў пункце пачатку адліку (0, 0) дэкартавай каардынатнай сістэмы, а каардынаты іншых двух пунктаў B = (xB, yB) і C = (xC, yC), тады плошчу S можна вылічыць як палавіну абсалютнага значэння вызначніка:

S=\frac{1}{2}\left|\det\begin{pmatrix}x_B & x_C \\ y_B & y_C \end{pmatrix}\right| = \frac{1}{2}|x_B y_C - x_C y_B|.

Ці ў агульным выпадку:

S=\frac{1}{2} \left| \det\begin{pmatrix}x_A & x_B & x_C \\  y_A & y_B & y_C \\ 1 & 1 & 1\end{pmatrix} \right| = \frac{1}{2} \big| x_A y_C - x_A y_B + x_B y_A - x_B y_C + x_C y_B - x_C y_A \big|.

У трохмернай прасторы плошча трохвугольніка {A = (xA, yA, zA), B = (xB, yB, zB) і C = (xC, yC, zC)} роўная корню квадратнаму з сумы квадратаў адпаведных праекцый на тры галоўныя плоскасці (для якіх x = 0 або y = 0 або z = 0):

S=\frac{1}{2} \sqrt{ \left( \det\begin{pmatrix} x_A & x_B & x_C \\ y_A & y_B & y_C \\ 1 & 1 & 1 \end{pmatrix} \right)^2 +
\left( \det\begin{pmatrix} y_A & y_B & y_C \\ z_A & z_B & z_C \\ 1 & 1 & 1 \end{pmatrix} \right)^2 +
\left( \det\begin{pmatrix} z_A & z_B & z_C \\ x_A & x_B & x_C \\ 1 & 1 & 1 \end{pmatrix} \right)^2 }.

Формула Герона[правіць | правіць зыходнік]

Форма трохвугольніка адназначна вызначаецца трыма старанамі. Адпаведна, для таго каб вылічыць плошчу дастаткова ведаць даўжыні старон. Паводле формулы Герона:

S = \sqrt{p(p-a)(p-b)(p-c)}, дзе p=\frac {a+b+c}{2}паўперыметр.

Іншы спосаб запісу формулы Герона:

 S = \frac{1}{4} \sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}.

Іншыя формулы[правіць | правіць зыходнік]

  1. S_{\triangle ABC}=\frac {1}{2} r(a+b+c) = pr = (p-b)r_b
  2. S_{\triangle ABC}=\frac {abc}{4R}
  3. S_{\triangle ABC}= \frac {a^2\sin\beta\sin\gamma}{2\sin\alpha}
  4. S_{\triangle ABC}= {2R^2\sin\alpha\sin\beta\sin\gamma}
  5. S_{\triangle ABC}= \frac {1}{2} [x_A(y_B-y_C)+x_B(y_C-y_A)+x_C(y_A-y_B)] у дадзенай формуле варта звярнуць увагу на абход вяршынь, калі йсці па гадзіннікавай стрэлцы, то атрымаецца тая ж плошча, але з адмоўным знакам
  6. S_{\triangle ABC}=r^2+2rR — для прамавугольнага трохвугольніка

Дзе:

p=\frac {a+b+c}{2} — напаўперыметр,
\ r — радыус упісанай акружнасці,
\ r_b — радыус пазаўпісанай акружнасці, датычны да стараны \ b,
\ R — радыус апісанай акружнасці,
\ (x_A,y_A) ; (x_B,y_B) ; (x_C,y_C) — каардынаты вяршынь трохвугольніка.

Спасылкі[правіць | правіць зыходнік]