Камбінаторыка

З пляцоўкі Вікіпедыя
Перайсці да: рух, знайсці

Камбінато́рны ана́ліз, ці камбінато́рыка - раздзел дыскрэтнай матэматыкі, які вывучае канечныя мноствы і разнастайныя варыянты спалучэнняў іх элементаў, а таксама заканамернасці пры выбарцы элементаў па зададзеных правілах. Кожнае правіла вызначае спосаб пабудовы некаторай канструкцыі (камбінаторнай канфігурацыі — перастаноўкі, размяшчэння, спалучэння ці інш.) з элементаў зыходнага мноства.

Найважнейшыя паняцці камбінаторыкі:

Метады камбінаторнага аналізу выкарыстоўваюцца ў тэорыі імавернасцей, тэорыі лікаў і інш. Мэта камбінаторыкі — вывучэнне камбінаторных канфігурацый, пытанняў іх існавання, алгарытмаў пабудавання, рашэнне задач на пералічэнне.

Гісторыя[правіць | правіць зыходнік]

Камбінаторныя задачы вядомы з глыбокай старажытнасці (у прыватнасці, вывучаліся магічныя квадраты). Матэматыкам Старажытнага Усходу была вядома формула, якая выражае лік спалучэнняў праз бінаміяльныя каэфіцыенты, і формула бінома Ньютана з натуральным паказчыкам ступені. Станаўленне камбінаторыкі як навукі звязана з працамі Я. Бернулі, Г. Лейбніца, Б. Паскаля, П. Ферма, Л. Эйлера. У 1950-я гады на развіццё камбінаторыкі значна паўплывалі кібернетыка, дыскрэтная матэматыка, тэорыі планавання і інфармацыі.

Літаратура[правіць | правіць зыходнік]

  • Камбінаторны аналіз // Беларуская энцыклапедыя: У 18 т. Т. 7: Застаўка — Кантата / Рэдкал.: Г. П. Пашкоў і інш. — Мн.: БелЭн., 1998. С. 507.
  • Комбинаторный анализ // Математическая энциклопедия / И. М. Виноградов (гл. ред.) — М.: Советская энциклопедия, 1979. — Т. 2. — 552 с. — 150 000 экз. Стл. 974—980.
  • Рыбников К.А. Введение в комбинаторный анализ. 2 изд М., 1985.