Фізіка: Розніца паміж версіямі

З Вікіпедыі, свабоднай энцыклапедыі
[дагледжаная версія][дагледжаная версія]
Змесціва выдалена Змесціва дададзена
др дапаўненне
→‎Старажытнасць: вікіфікацыя
Радок 27: Радок 27:
=== Старажытнасць ===
=== Старажытнасць ===


Са старажытных часоў людзі спрабавалі зразумець паводзіны і ўласцівасці матэрыі: чаму прадметы падаюць на зямлю, калі́ яны губляюць сваю крэпасць, чаму розныя матэрыялы маюць розныя ўласцівасці, і падобнае. Таямніцаю была і прырода [[Сусвет]]у, сама форма [[Зямля|Зямлі]], паводзіны і рух [[Сонца]] і [[Месяц, спадарожнік Зямлі|Месяца]]. Розныя тэорыі спрабавалі растлумачыць гэтыя з'явы, аднак большасць з іх не былі пацверджана эксперыментальна. Аднак былі людзі, якія прапаноўвалі гіпотэзы і знаходзілі доказы для іх, і пасля, у будучыні, гэтыя законы сталі асновай фізікі. Напрыклад, [[Архімед]] вывеў некалькі дакладных законаў [[механіка|механікі]] і [[гідрастатыка|гідрастатыкі]], якія і дагэтуль маюць вялікае практычнае значэнне.
Са старажытных часоў людзі спрабавалі зразумець паводзіны і ўласцівасці матэрыі: чаму прадметы падаюць на зямлю, калі́ яны губляюць сваю крэпасць, чаму розныя матэрыялы маюць розныя ўласцівасці, і падобнае. Таямніцаю была і прырода [[Сусвет]]у, сама форма [[Планета Зямля|Зямлі]], паводзіны і рух [[Сонца]] і [[Месяц, спадарожнік Зямлі|Месяца]]. Розныя тэорыі спрабавалі растлумачыць гэтыя з'явы, аднак большасць з іх не былі пацверджана эксперыментальна. Аднак былі людзі, якія прапаноўвалі гіпотэзы і знаходзілі доказы для іх, і пасля, у будучыні, гэтыя законы сталі асновай фізікі. Напрыклад, [[Архімед]] вывеў некалькі дакладных законаў [[механіка|механікі]] і [[гідрастатыка|гідрастатыкі]], якія і дагэтуль маюць вялікае практычнае значэнне.


=== 16-17 стагоддзі ===
=== 16-17 стагоддзі ===

Версія ад 09:42, 16 студзеня 2015

Комплексная навука • Прыродазнаўства
Фізіка
Φυσική
Прыклады розных фізічных з'яў
Прадмет
вывучэння
Матэрыя (у выглядзе рэчыва і палёў) і найбольш агульныя формы яе руху, а таксама фундаментальныя узаемадзеянні прыроды, што кіруюць рухам матэрыі.
Перыяд
зараджэння
V стагоддзе да н. э.XVI стагоддзе

Фізіка — навука аб уласцівасцях, формах і будове матэрыі (рэчыва і поля), найбольш агульных законах яе руху і пераўтварэнняў. Слова паходзіць ад грэчаскага «фюсіс» (φύσις - прырода) і было ўведзена Арыстоцелем як назва аднаго з яго трактатаў.

Уводзіны

Фізіка — галіна навукі, якая вывучае прыроду ў самым агульным сэнсе. Яна вывучае рэчыва і энергію, а таксама фундаментальныя ўзаемадзеянні прыроды, кіруючыя рухам матэрыі.

Некаторыя заканамернасці з'яўляюцца агульнымі для ўсіх матэрыяльных сістэм, напрыклад, захаванне энергіі, — такія ўласцівасці называюць фізічнымі законамі. Фізіку часам называюць «фундаментальнай навукай», бо іншыя прыродазнаўчыя навукі апісваюць толькі некаторы клас матэрыяльных сістэм, якія падпарадкоўваюцца законам фізікі.

Фізіка цесна звязана з матэматыкай: па сутнасці, для фізікі матэматыка з'яўляецца нечым падобным да мовы, з дапамогай якой фармулююцца фізічныя законы. Фізічныя тэорыі амаль заўсёды запісваюцца ў выглядзе матэматычных выразаў, прычым, у параўнанні з большасцю іншых навук, у фізіцы выкарыстоўваюцца больш складаныя і абстрактныя матэматычныя паняцці. І наадварот, развіццё многіх абласцей матэматыкі стымулявалася патрэбамі фізічных тэорый.

Паняцці і законы фізікі ляжаць у аснове ўсіх прыродазнаўчых навук (хіміі, біялогіі, навукі аб Зямлі, астраноміі). Адкрыццё фізічных законаў ажыццяўляецца на аснове фактаў, устаноўленых доследным шляхам. Самі фізічныя законы фармулююцца ў выглядзе колькасных суадносін паміж фізічнымі велічынямі. Асаблівае значэнне ў фізіцы маюць законы захавання, якія звязаны з прынцыпамі сіметрыі прасторы і часу.

Гісторыя

Старажытнасць

Са старажытных часоў людзі спрабавалі зразумець паводзіны і ўласцівасці матэрыі: чаму прадметы падаюць на зямлю, калі́ яны губляюць сваю крэпасць, чаму розныя матэрыялы маюць розныя ўласцівасці, і падобнае. Таямніцаю была і прырода Сусвету, сама форма Зямлі, паводзіны і рух Сонца і Месяца. Розныя тэорыі спрабавалі растлумачыць гэтыя з'явы, аднак большасць з іх не былі пацверджана эксперыментальна. Аднак былі людзі, якія прапаноўвалі гіпотэзы і знаходзілі доказы для іх, і пасля, у будучыні, гэтыя законы сталі асновай фізікі. Напрыклад, Архімед вывеў некалькі дакладных законаў механікі і гідрастатыкі, якія і дагэтуль маюць вялікае практычнае значэнне.

16-17 стагоддзі

У канцы 16 ст. Галілей першы пачаў паслядоўна прымяняць навуковы метад, праводзячы эксперыменты, каб пацвердзіць свае здагадкі і тэорыі. Ён паспяхова распрацаваў і эксперыментальна пацвердзіў некаторыя законы дынамікі, у тым ліку і закон інерцыі. У 1687 г. англійскі навуковец Ньютан апублікаваў «Матэматычныя прынцыпы натуральнай філасофіі», у якой звернута ўвага на законы руху, якія абапіраюцца на класічную механіку і закон сусветнага прыцягнення, які апісвае адну з чатырох фундаментальных сіл прыроды — гравітацыю. Абедзве гэтыя тэорыі выведзены ў адпаведнасці з эксперыментамі. У класічную механіку таксама ўнеслі значны ўклад Лагранж, Гамільтан і інш., якія адкрылі новыя фармулёўкі, прынцыпы і вынікі. Адкрыццё законаў гравітацыі падштурхнула ўзнікненне і развіццё астрафізікі, у якой апісваюцца астранамічныя з'явы.

18-19 стагоддзі

18 стагоддзе было багатае на значныя адкрыцці ў тэрмадынаміцы. У 1733 г. Данііл Бернулі, з дапамогай статыстычных метадаў класічнай механікі, атрымаў шэраг вынікаў у кінетычнай тэорыі газаў, тым самым даўшы пачатак развіццю статыстычнай механікі.

У сярэдзіне 19 стагоддзя Уільям Томпсан (лорд Кельвін) і Рудольф Клаўзіус залажылі асновы тэрмадынамікі. У 1847 г. Юліус Маер і Джэймс Джоўль сфармулявалі агульны закон захавання энергіі.

Электрычнасць і магнетызм былі вывучаны Фарадэем, Омам, і іншымі навукоўцамі. У 1855 г. Максвел аб'яднаў гэтыя дзве з'явы ў адзінай тэорыі электрамагнетызму, апісаўшы іх ураўненнямі. З гэтае тэорыі вынікала, што святло ўяўляе сабою электрамагнітныя хвалі.

У 1895 г. Рэнтген адкрыў Х-выпраменьваннеэлектрамагнітнае выпраменьванне з вельмі высокаю частатою, што падштурхнула да вывучэння радыеактыўнасці, якая была адкрыта ў 1896 г. Анры Бекерэлем і вывучана П'ерам і Марыяй Кюры, а таксама іншымі даследчыкамі. Гэта заклала асновы новай вобласці — ядзернай фізікі.

У 1897 г. Джозеф Томсан адкрыў электрон, адзін з асноўных носьбітаў зараду. У 1904 г. прапанаваў першую мадэль атама. (Існаванне атамаў было прадказана Джонам Дальтанам у 1808 г.).

20-21 стагоддзі

У 1905 г. Альберт Эйнштэйн сфармуляваў асноўныя палажэнні тэорыі адноснасці і стварыў новую рэлятывісцкую тэорыю гравітацыі. Ён быў адным з вучоных, што стаялі ля вытокаў квантавай фізікі.

У 1911 г. Эрнэст Рэзерфорд правёў шэраг эксперыментаў з рассейваннем альфа-часціц і даказаў існаванне кампактнага дадатна зараджанага ядра атама. Нейтральна зараджаныя часціцы — нейтроны, былі выяўлены Джэймсам Чэдвікам у 1932 г.

У пачатку 20 ст. Планк, Эйнштэйн, Бор і іншыя растлумачылі выяўленыя ў эксперыментах анамаліі (якія, як высветлілася, былі праявамі квантавай прыроды матэрыі), а затым прадставілі канцэпцыю дыскрэтных энергетычных узроўняў. У 1925 г. Гейзенберг і Шродзінгер сфармулявалі асноўныя палажэнні квантавае механікі, якая ўключала набытыя раней веды пра квантавы свет і тлумачыла вынікі многіх эксперыментаў. У квантавай механіцы фізічныя вымярэнні маюць імавернасны характар.

У рамках квантавай механікі былі распрацаваны тэарэтычныя метады для вывучэння ўласцівасцей цвёрдых цел і вадкасцей, у тым ліку такіх з'яў, як крышталічная структура, праводнасць, звышправоднасць і звышцякучасць. Сярод першапраходцаў у гэтай вобласці фізікі вылучаюць Блоха, які здолеў растлумачыць паводзіны электронаў у крышталічных структурах.

Падчас Другой Сусветнай вайны, усе ваюючыя бакі праводзілі інтэнсіўныя даследаванні ў галіне ядзернай фізікі, жадаючы зрабіць атамную бомбу. Намаганні немцаў не ўвянчаліся поспехам, але Манхэтэнскі праект дасягнуў мэты. У Амерыцы ў 1942 г. каманда на чале з Фермі дасягнула першай штучнай ланцуговай ядзернай рэакцыі, а ў 1945 г. першы ядзерны выбух прагрымеў у Нью-Мексіка.

У сярэдзіне 20 ст. было апісана электрамагнітнае ўзаемадзеянне. Квантавая тэорыя поля паслужыла асновай для сучаснай тэорыі часціц, якая займаецца вывучэннем фундаментальных сіл прыроды і элементарных часціц. У трэцяй чвэрці 20 ст. Янг і Мілс паспяхова апісалі ўсе вядомыя на дадзены момант часціцы.

Галіны фізікі

Касманаўт і Зямля — абодва знаходзяцца ў свабодным падзенні

Гл. таксама

У Сеціве

Шаблон:Link FA Шаблон:Link FA Шаблон:Link FA Шаблон:Link GA Шаблон:Link GA Шаблон:Link GA Шаблон:Link GA