Агульная тэорыя адноснасці

З пляцоўкі Вікіпедыя.
Перайсці да: рух, знайсці
Альберт Эйнштэйн — аўтар агульнай тэорыі адноснасці (1921 год)
Агульная тэорыя адноснасці
G_{\mu \nu} + \Lambda g_{\mu\nu} = {8\pi G\over c^4} T_{\mu \nu}\,
Гравітацыя
Матэматычная фармулёўка
Касмалогія
Гл. таксама «Фізічны партал»

Агульная тэорыя адноснасці (АТА; ням.: allgemeine Relativitätstheorie) — тэорыя гравітацыі, апублікаваная Альбертам Эйнштэйнам ў 1915 годзе. У адрозненне ад нерэлятывісцкай тэорыі гравітацыі Ньютана, прыдатная для апісання гравітацыйнага ўзаемадзеяння цел, якія рухаюцца з хуткасцю, блізкай да хуткасці святла. Яе таксама можна ўжываць у выпадку моцных гравітацыйных палёў, якія ўзнікаюць, напрыклад, паблізу нейтронных зорак і чорных дзірак. У сонечнай сістэме эфекты АТА выяўляюць сябе нязначным адхіленнем фактычных траекторый руху планет і іншых касмічных целаў (у першую чаргу Меркурыя) ад арбіт, разлічаных у рамках тэорыі Ньютана.

Канцэптуальнае ядро агульнай тэорыі адноснасці, з якога вынікае большасць яе высноў - прынцып эквівалентнасці , які сцвярджае, што гравітацыя і паскарэнне - гэта эквівалентныя фізічныя з'явы. Гэта значыць, што не існуе такога фізічнага эксперыменту, які б мог лакальна адрозніць дзеянне на назіральніка аднароднага гравітацыйнага поля ад роўнапаскоранага руху сістэмы адліку, у якой знаходзіцца гэты назіральнік. Гэты прынцып тлумачыць, чаму эксперыментальныя вымярэння гравітацыйнай і інерцыйнай мас даказваюць іх эквівалентнасць.

Гэта сцверджанне стала асновай шматлікіх адкрыццяў, такіх як гравітацыйны чырвоны зрух, скрыўленне промняў святла каля вялікіх гравітацыйных мас (такіх як зоркі), чорныя дзіркі, запаволенне часу ў гравітацыйным полі і г.д. Але варта адзначыць, што з прынцыпу эквівалентнасці не вынікае адзінасць ураўненняў скрыўленнага прасторы-часу, і гэта ў прыватнасці прывяло да з'яўлення так званай касмалагічнай канстанты, якая фігуруе ў шэрагу тэорый.

Мадыфікацыі закона сусветнага прыцягнення Ньютана прывялі да першага поспеху новай тэорыі: карэктнага прадказання эфекту прэцэсіі (вагання) перыгелія арбіты Меркурыя. Многія іншыя прадказанні тэорыі былі ў далейшым пацверджаны астранамічнымі назіраннямі. З прычыны высокай складанасці гэтых назіранняў і цяжкасці з дасягненнем здавальняючай дакладнасці вымярэнняў набылі права на існаванне альтэрнатыўныя тэорыі гравітацыі, такія як тэорыя Бранса-Дыке або біметрычная тэорыя Розена. Але няма пакуль такіх эксперыментальных дадзеных, якія б маглі выклікаць неабходнасць перагляду агульнай тэорыі адноснасці.

Тым не менш, ёсць тэарэтычныя падставы казаць, што агульная тэорыя адноснасці з'яўляецца няскончанай тэорыяй. Яна не стасуецца з квантавай механікай, а яе найбольш прамое квантавае абагульненне паказвае некарэктныя вынікі ва ўмовах высокіх энергій. Пытанне аб аб'яднанні гэтых двух тэорый — адна з фундаментальных праблем сучаснай тэарэтычнай фізікі.

Сувязь са спецыяльнай тэорыяй адноснасці[правіць | правіць зыходнік]

Спецыяльная тэорыя адноснасці ўнесла фундаментальныя змены ў законы класічнай механікі, зыходзячы з наступных пастулатаў:

  • усе інерцыйныя сістэмы адліку раўнапраўныя;
  • хуткасць святла ва ўсіх інерцыйных сістэмах аднолькавая.

З гэтых пастулатаў вынікае, што хуткасць святла з'яўляецца максімальна дапушчальнай ў прыродзе. Любы матэрыяльны аб'ект не можа рухацца хутчэй святла.

З пункту гледжання спецыяльнай тэорыі адноснасці прастора і час цесна звязаныя паміж сабой. Іх варта лічыць адзінай чатырохмернай мнагастайнасцю, якая мае назву “прастора-час”. Назіральнікі, якія рухаюцца адзін адносна аднаго, па-рознаму вызначаюць “прасторавыя” і “часавыя” кірункі ў гэтай мнагастайнасці. Таму прастору і час больш немагчыма разглядаць як дзве асобныя сутнасці.

Агульная тэорыя адноснасці дапоўніла гэтую карціну тым, што энергія гравітацыйнага поля (народжаная матэрыяй) здольна дэфармаваць прастору-час так, што “прамыя” лініі ў прасторы і часе маюць некаторыя ўласцівасці “крывых” ліній.

Скрыўленне прасторы-часу[правіць | правіць зыходнік]

Матэматыкі выкарыстоўваюць тэрмін “скрыўленне” для абазначэння любой прасторы, дзе геаметрыя не з'яўляецца эўклідавай.

Крывізна прасторы-часу можа быць вымерана “знутры” назіральнікамі, якія знаходзяцца ў ім, г. зн. без выкарыстання дадатковых вымярэнняў.

Для ілюстрацыі разгледзім, як крывізна паверхні Зямлі можа быць вымерана назіральнікам, які ўвесь час знаходзіцца на гэтай паверхні. Правядзем такі разумовы эксперымент: Вы адпраўляецеся з Паўночнага полюса на поўдзень і праходзіце прыблізна 10 000 км (да экватара), затым паварочваеце налева дакладна на 90 градусаў, ідзяцё 10 000 км, паварочваеце зноў налева на 90 градусаў і ідзяцё яшчэ 10 000 км і вяртаецеся дакладна туды, адкуль пачалі, прычым пад вуглом 90 градусаў да першага адрэзка Вашага шляху. Такі трохвугольнік з трыма прамымі кутамі, абсалютна немагчымы ў Эўклідавай геаметрыі, аказваецца магчымым на паверхні Зямлі толькі таму, што Зямля мае скрыўленую паверхню.

Скрыўленасць прасторы-часу, у якім мы жывём, таксама можа быць выяўлена шляхам пастаноўкі пэўных эксперыментаў.

Базіс тэорыі гравітацыі[правіць | правіць зыходнік]

Матэматычныя асновы агульнай тэорыі адноснасці вяртаюць нас да аксіём Эўклідавай геаметрыі і шматлікіх спроб даказаць вядомы пяты пастулат Эўкліда аб тым, што паралельныя лініі застаюцца эквідыстантнымі, а г. зн. — не перасякаюцца. Лабачэўскі, Больяй і Гаус даказалі, што гэтая аксіёма не абавязкова павінна быць правільнай, і заклалі асновы для пабудовы неэўклідавай геаметрыі. Агульная матэматыка неэўклідавай геаметрыі была распрацавана Гаусавым студэнтам Рыманам, але не мела прымянення ў рэчаіснасці да таго часу, пакуль Эйнштэйн не сфармуляваў агульную тэорыю адноснасці.

Гаўс зыходзіў з таго, што няма апрыёрных доказаў менавіта эўклідавай геаметрыі рэальнага свету. Гэта б азначала, што калі б фізік трымаў палачку, а картограф стаяў на некаторай адлегласці ад яго і вымяраў бы даўжыню палачкі вядомым у геадэзіі метадам трыангуляцыі, заснаваным на эўклідавай геаметрыі, то не было б гарантыі супадзення выніку вымярэння з тым, які б ажыццявіў сам фізік, ад якога палачка знаходзіцца на вельмі блізкай адлегласці. Зразумела, што на практыцы з дапамогай палачкі вызначыць неэўклідавасць геаметрыі немагчыма, але існуюць эксперыменты, якія вызначаюць неэўклідавасць непасрэдна. Напрыклад, эксперымент Паунда-Рэбкі (1959) зафіксаваў змену даўжыні хвалі выпрамянення кобальтавай крыніцы, паднятай на 22,5 метра над зямлёй на вежы ў Гарвардзе, а пазней атамныя гадзіннікі на спадарожніках глабальнай сістэмы пазіцыянавання (GPS) былі спраектаваны і працуюць з улікам гравітацыйных эфектаў.

Ньютанава інтэрпрэтацыя яго ўласнай тэорыі гравітацыі сцвярджала, што аб'екты рэчаіснасці маюць абсалютныя хуткасці, г. зн. што некаторыя целы сапраўды знаходзяцца ў абсалютным спакоі, тады як іншыя сапраўды рухаюцца. Але Ньютан разумеў, што гэты абсалютны стан не можа быць непасрэдна вымераны. Усе вымярэння даюць толькі хуткасць аднаго цела адносна іншага, і законы механікі здаваліся справядлівымі для ўсіх целаў, незалежна ад нюансаў іх руху. Ньютан верыў, што гэтая тэорыя не мае сэнсу без разумення таго, што абсалютныя велічыні ў рэчаіснасці ёсць, хоць мы не і можам іх вымераць. Але фактычна, ньютанава механіка можа працаваць і без гэтай здагадкі, і гэта не трэба блытаць з пазнейшым пастулатам Эйнштэйна аб інварыянтнасці хуткасці святла.

У 19 стагоддзі Максвел сфармуляваў сістэму ўраўненняў для электрамагнітнага поля, якая прадэманстравала, што святло паводзіць сябе як электрамагнітная хваля, якая распаўсюджваецца з фіксаванай хуткасцю ў прасторы. Гэта стала базай для далейшых эксперыментаў па праверцы ньютанавай тэорыі: параўноўваючы ўласную хуткасць з хуткасцю святла, можна было б вызначыць абсалютную хуткасць назіральніка. Ці, што тое ж самае, вызначыць хуткасць назіральніка адносна сістэмы адліку, якая з'яўляецца ідэнтычнай для ўсіх іншых назіральнікаў.

Гэтыя сцвярджэнні заснаваныя на дапушчэнні аб распаўсюджванні святла ў пэўным асяроддзі, і гэтае асяроддзе магло быць менавіта тым, ад чаго трэба было адштурхоўвацца у правядзенні далейшых эксперыментаў. Быў праведзены шэраг эксперыментаў па вызначэнні хуткасці Зямлі адносна гэтай сусветнай "сутнасці", або "эфіру". Ідэя была такая: хуткасць святла, вымераная на паверхні Зямлі, павінна была быць больш, калі планета рухалася б ўздоўж руху эфіру і менш, калі б яна рухалася ў процілеглым кірунку (зразумела, што тут трэба было б ўлічыць і кручэнне Зямлі вакол сваёй восі). Праверка, ажыццёўленая Майкельсонам і Морлі ў канцы 19 стагоддзя, мела дзіўны вынік: хуткасць святла заставалася пастаяннай ва ўсіх напрамках.

У 1905 годзе Эйнштэйн у сваім артыкуле “Да электрадынамікі цел, якія рухаюцца” растлумачыў гэтыя вынікі зыходзячы з пастулатаў спецыяльнай тэорыі адноснасці.

Асноўныя прынцыпы[правіць | правіць зыходнік]

Фундаментальная ідэя, якая ляжыць у аснове агульнай тэорыі адноснасці, складаецца ў тым, што мы не можам весці гаворку аб фізічным змесце хуткасці або паскарэння без вызначэння сістэмы адліку. У спецыяльнай тэорыі адноснасці сцвярджаецца, што сістэма адліку можа быць пашырана бясконца на ўсе напрамкі ў прасторы і часе. Гэта таму, што спецыяльная тэорыя адноснасці асацыюецца менавіта з інерцыйнымі (без паскарэння) сістэмамі адліку. Агульная ж сцвярджае, што сістэма адліку можа быць толькі лакальнай, справядлівай толькі для абмежаванай вобласці прасторы і прамежку часу (дакладна так, як мы можам намаляваць плоскую карту геаграфічнага рэгіёну, але не можам распаўсюдзіць яе на ўсю планету — дадуць пра сябе ведаць хібнасці ад скрыўленай паверхні Зямлі). У агульнай тэорыі адноснасці законы Ньютана застаюцца справядлівымі толькі ў лакальных сістэмах адліку. Напрыклад, свабодныя часціцы ў лакальных інерцыйных (лорэнцавых) сістэмах рухаюцца па прамых лініях. Але гэтыя лініі з'яўляюцца прамымі толькі ў межах сістэмы адліку. Насамрэч яны не з'яўляюцца прамымі, яны з'яўляюцца лініямі, вядомымі як геадэзічныя. Такім чынам, першы закон Ньютана замяняецца "геадэзічным" законам руху.

У інерцыйных сістэмах адліку цела захоўвае сваё стан да таго часу, пакуль на яго не падзейнічаюць знешнія сілы. У неінерцыйных сістэмах адліку целы набываюць паскарэнне не ад ўздзеяння на іх іншых цел, а непасрэдна ад самой сістэмы адліку. Менавіта таму мы адчуваем на сабе дзеянне паскарэння, знаходзячыся ў аўтамабілі, які паварочвае. Тут аўтамабіль з'яўляецца базісам неінерцыйнай сістэмы адліку, у якой мы знаходзімся. Гэтак жа дзейнічае вядомая сіла Карыёліса, толькі тут мы ў якасці сістэмы адліку бяром цела, якое круціцца, гэта значыць, у дадзеным выпадку, Зямлю і г. д. Прынцып эквівалентнасці ў тэорыі гравітацыі якраз сцвярджае, што ніякія лакальныя эксперыменты не пакажуць розніцы паміж знаходжаннем цела ў гравітацыйным полі і адпаведным па характарыстыках паскораным рухам.

Матэматычна Эйнштэйн змадэляваў прастору-час з дапамогай чатырохмернай псеўда-рыманавай мнагастайнасці, і яго ўраўненні гравітацыйнага поля сцвярджаюць, што скрыўленасць гэтай мнагастайнасці ў адвольнай кропцы непасрэдна звязана з тэнзарам энергіі-імпульсу. Гэты тэнзар адпавядае шчыльнасці матэрыі і энергіі ў гэтай кропцы. Скрыўленне прасторы-часу, такім чынам, прыводзіць у рух матэрыю, і матэрыя, з другога боку, з'яўляецца прычынай скрыўлення прасторы-часу.

Справядлівасць ураўнення гравітацыйнага поля патрэбна даказваць эксперыментальна, тут ёсць прастор для альтэрнатыўнасці тэорый з той толькі умовай, каб яны не супярэчылі наяўным эксперыментальным даным. Тэорыя Эйнштэйна выбрана з шэрагу іншых падобных у тым ліку і дзякуючы прастаце канцэпцый узаемасувязі матэрыі і скрыўлення прасторы-часу — скрыўленне у агульнай тэорыі адноснасці прама прапарцыянальна тэнзару энергіі-імпульсу. Тым не менш, пытанне аб'яднання яе з квантавай механікай і замены ўраўненняў гравітацыйнага поля на фундаментальныя квантавыя заканамернасці ўсё яшчэ актуальнае.

Ураўненні Эйнштэйна для гравітацыйнага поля ў адным з варыянтаў ўтрымліваюць параметр, які называецца касмалагічнай канстантай (\Lambda), якая была ўведзена Эйнштэйнам для таго, каб атрымаць у якасці рашэння гэтых ураўненняў мадэль статычнага Сусвету, г. зн. такога, які не пашыраецца і не сціскаецца. Але гэта не мела належнага эфекту, бо такі статычны сусвет з'яўляецца нестабільным, ды і астранамічныя назіранні пачынаючы з Хабла (1929 год) і канчаючы H0 Key Project касмічнага тэлескопа Хабла пацвердзілі, што наш сусвет пашыраецца. Таму касмалагічная канстанта была пазней названая Эйнштэйнам “самай вялікай памылкай, калі-небудзь зробленай”. Тым не менш, некаторыя новыя даныя патрабуюць ненулявога значэння касмалагічнай канстанты для тлумачэння вынікаў назіранняў.

Эйнштэйнавы ўраўненні гравітацыйнага поля[правіць | правіць зыходнік]

Асноўнай характарыстыкай прасторы-часу ў агульнай тэорыі адноснасці з'яўляецца метрыка прасторы-часу, якая задаецца метрычным тэнзарам. Гэтая велічыня вызначаецца дзяленнем матэрыі і поля, якое характарызуецца тэнзарам энергіі-імпульсу. Сувязь паміж гэтымі велічынямі задаецца гравітацыйнай пастаяннай.

Ураўненне для вызначэння метрычнага тэнзара выглядае наступным чынам:

R_{ik} - {1 \over 2} R g_{ik} = 8 \pi {G \over c^4} T_{ik},

дзе ~R_{ik}тэнзар Рычы, ~Rскалярнае скрыўленне, ~g_{ik}метрычны тэнзар, ~T_{ik}тэнзар энергіі-імпульсу, які вызначае негравітацыйныя палі матэрыі (іх энергію і сілы) у адвольнай кропцы прасторы-часу, ~\piлік “пі”, ~cхуткасць святла, ~Gгравітацыйная пастаянная, якая з'яўляецца і ў адпаведным законе сусветнага прыцягнення Ньютана.

Тэнзар Рычы і скалярнае скрыўленне — вытворныя ад ~g_{ik}. ~g_{ik} — метрыка мнагастайнасці і матэматычна мае структуру сіметрычнага 4 × 4-тэнзара, такім чынам складаючыся з 10 незалежных кампанент. Пасля вызначэння чатырох прасторава-часавых каардынат, колькасць незалежных ураўненняў, якія складаюць Эйнштэйнавы ўраўненні гравітацыйнага поля, скарачаецца да 6.

Касмалагічная канстанта, хоць і здавалася Эйнштэйну незалежнай велічынёй, можа быць уключана ў склад тэнзара энергіі-імпульсу і праінтэрпрэтавана ў такім выпадку як выразнік існавання так званай цёмнай энергіі, шчыльнасць якой пастаянная ў прасторы-часе.

Вывучэнне рашэнняў гэтага ўраўнення — адна з актыўных абласцей тэарэтычнай і матэматычнай фізікі. Практычныя вынікі выкарыстоўваюцца ў астраноміі, астрафізіцы і касмалогіі. Гэтыя апошнія навукі, грунтуючыся на ўраўненнях Эйнштэйна, прадказалі існаванне чорных дзірак і сфармулявалі розныя мадэлі эвалюцыі Сусвету.

Эксперыментальная праверка[правіць | правіць зыходнік]

У 1919 годзе першыя спецыяльна праведзеныя эксперыменты Артура Эдынгтана паказалі зрушэнне пазіцыі зорак ў працэсе сонечнага зацьмення (Сонца, маючы вялікую масу, скрывіла прамяні святла ад зоркі, візуальна зрушыўшы яе са сваёй пазіцыі) і пацвердзілі справядлівасць тэорыі.

Гл. таксама[правіць | правіць зыходнік]

Літаратура[правіць | правіць зыходнік]

  • Ландау Л.Д., Лившиц Е.М. Теоретическая физика. т. ІІ. Теория поля., 1974, Москва: Наука.
  • Загальна теорія відносності: випробування часом: Моногр. / Я.С. Яцків, О.М. Александров, І.Б. Вавилова, В.І. Жданов, Ю.М. Кудря; Голов. астрон. обсерваторія. Центр дослідж. наук.-техн. потенціалу та історії науки ім. Г.М.Доброва. Київ. нац. ун-т ім. Т.Шевченка. Астрон. обсерваторія. — К.: ГАО НАН України, 2005. — 287 с. — Бібліогр.: с. 248-281. — ISBN 966-02-3728-6.
Тэорыі гравітацыі
Стандартныя тэорыі гравітацыі Альтэрнатыўныя тэорыі гравітацыі Квантавыя тэорыі гравітацыі Адзіныя тэорыі поля
Класічная фізіка

Рэлятывісцкая фізіка

Прынцыпы

Класічныя

Рэлятывісцкія

Шматмерныя

Струнныя

Іншыя