Перайсці да зместу

Металы

З Вікіпедыі, свабоднай энцыклапедыі
Версія ад 10:32, 28 сакавіка 2023, аўтар Artsiom91 (размовы | уклад) (выдалена Катэгорыя:Метал з дапамогай HotCat)
(розн.) ← Папярэдн. версія | Актуальная версія (розн.) | Навейшая версія → (розн.)

Метал (мн. лік «металы»; ад лац.: metallum — шахта) — простае рэчыва, атамы якога вызначаюцца здольнасцю аддаваць валентныя электроны і пераходзіць у дадатна зараджаныя іоны. Абагуленыя валентныя электроны свабодна перамяшчаюцца ў крышталічнай рашотцы, забяспечваючы сувязь паміж атамамі. Структура металаў апісваецца зоннай тэорыяй.

Большасць (больш за 85) вядомых хімічных элементаў — металы і толькі каля 22 — неметалы.

Адрозніваюць металы галоўных і пабочных падгруп Перыядычнай сістэмы. Металы галоўных падгруп завуцца непераходнымі, у іх атамах адбываецца запаўненне s- і р-электронных абалонак. Металы пабочных падгруп завуцца пераходнымі, у іх дабудоўваюцца d- і f-абалонкі, у адпаведнасці з чым яны падзяляюцца на d-групу і дзве f-групы — лантаноіды і актыноіды.

Фізічныя ўласцівасці

[правіць | правіць зыходнік]

Металы вызначаюцца высокай электра- і цеплаправоднасцю, здольнасцю адбіваць светлавыя хвалі, пластычнасцю. У цвёрдым выглядзе звычайна маюць крышталічную будову. Большасць металаў крышталізуецца ў простых структурах (кубічных і гексаганальных), якія адпавядаюць найшчыльнейшай кампаноўцы атамаў. Шмат металаў могуць існаваць у дзвюх і больш крышталічных мадыфікацыях (гл. Палімарфізм). Паліморфныя пераходы часам спалучаюцца са стратай металічных уласцівасцей (напрыклад, пераход белага волава (b-Sn) ў шэрае (a-Sn).

Цвёрдасць некаторых металаў па шкале Моаса:[1]

Цвёрдасць Метал
0.2 Цэзій
0.3 Рубідый
0.4 Калій
0.5 Натрый
0.6 Літый
1.2 Індый
1.2 Талій
1.25 Барый
1.5 Стронцый
1.5 Галій
1.5 Волава
1.5 Свінец
1.5 Ртуць(цв.)
1.75 Кальцый
2.0 Кадмій
2.25 Вісмут
2.5 Магній
2.5 Цынк
2.5 Лантан
2.5 Серабро
2.5 Золата
2.59 Ітрый
2.75 Алюміній
3.0 Медзь
3.0 Сурма
3.0 Торый
3.17 Скандый
3.5 Плаціна
3.75 Кобальт
3.75 Паладый
3.75 Цырконій
4.0 Жалеза
4.0 Нікель
4.0 Гафній
4.0 Марганец
4.5 Ванадый
4.5 Малібдэн
4.5 Родый
4.5 Тытан
4.75 Ніёбій
5.0 Ірыдый
5.0 Рутэній
5.0 Тантал
5.0 Тэхнецый
5.0 Хром
5.5 Берылій
5.5 Осмій
5.5 Рэній
6.0 Вальфрам
6.0 β-Уран

Хімічныя ўласцівасці

[правіць | правіць зыходнік]

Агульныя для металаў хімічныя ўласцівасці абумоўлены слабай сувяззю валентных электронаў з ядром атама: утварэнне дадатна зараджаных іонаў (катыёнаў), станоўчая ступень акіслення ў злучэннях, утварэнне асноўных аксідаў і гідраксідаў, выцясненне вадароду з кіслот і г.д.

Металічныя ўласцівасці элемента праяўляюцца тым яскравей, чым ніжэй яго электраадмоўнасць. У падгрупах Перыядычнай сістэмы з узрастаннем атамнага нумару электраадмоўнасць у цэлым змяншаецца, а металічныя ўласцівасці ўзрастаюць.

Металы ад Li да Na лёгка рэагуюць з кіслародам на холадзе, іншыя злучаюцца з кіслародам толькі пры награванні, а Ir, Pt, Au з кіслародам не ўзаемадзейнічаюць. Уласцівасці металаў характарызуюцца іх месцам у электрахімічным радзе. Металы ад Li да Na выцясняюць вадарод з вады пры нармальных умовах, а ад Mg да Tl — пры награванні. Металы, якія стаяць у электрахімічным радзе перад вадародам, выцясняюць яго з разбаўленых кіслот (на холадзе або пры награванні). Металы, якія стаяць у электрахімічным радзе пасля вадароду, раствараюцца толькі ў кіслародных кіслотах (канцэнтраваная H2SO4 ці HNO3), а Pt, Au — толькі ў сумесі гэтых кіслот. Аксіды металаў ад Li да Al і ад La да Zn аднаўляюцца цяжка, бліжэй да канца рада схільнасць да аднаўлення павялічваецца, аксіды апошніх у радзе металаў распадаюцца на метал і кісларод ужо пры невялікім награванні. Ступені акіслення непераходных металаў: +1 для падгрупы I а; +2 для II a; +1 і +3 для III a; +2 і +4 для IV a; +2, +3 і +5 для V a; — 2, +2, +4, +6 для VI a. У пераходных металах: +1, +2, +3 для падгрупы I б, +2 для II б; +3 для III б; +2, +3, +4 для IV б; +2, +3, +4, +5 для V б; +2, +3, +4, +5, +6 для VI б, +2, +3, +4, +5, +6, +7 для VII б, от +2 до +8 в VIII б. У лантаноідаў: +2, +3 і +4, у актыноідаў — ад +3 да +6. Аксіды металаў з малой ступенню акіслення маюць асноўныя ўласцівасці, аксіды з высокай ступенню акіслення з’яўляюцца ангідрыдамі кіслот. Металы з пераменнаю валентнасцю (напрыклад, Cr, Mn, Fe), у злучэннях, дзе яны маюць нізкія ступені акіслення, (Cr (+2), Mn (+2), Fe (+2)), выяўляюць аднаўленчыя ўласцівасці, а ў злучэннях, дзе яны маюць вышэйшыя ступені акіслення (Cr (+6), Mn (+7), Fe (+3)) уласцівасці акісляльныя.

Здольнасць металаў да ўтварэння злучэнняў і паліморфных пераходаў стварае аснову для атрымання шматлікіх сплаваў з разнастайнымі карыснымі ўласцівасцямі. Колькасць вядомых сплаваў перавысіла 10 000.

Назва «метал» паходзіць ад грэчаскага métallon (ад metalléuo — выкапваю, здабываю з зямлі), якое спачатку азначала копі, руднікі (у Геродота, 5 ст. да н.э.). У старажытнасці і сярэднявеччы лічылі, што ёсць 7 металаў: золата, серабро, медзь, волава, свінец, жалеза, ртуць. М. В. Ламаносаў налічваў 6 металаў (Au, Ag, Cu, Sn, Fe, Pb) і вызначаў метал як «светлое тело, которое ковать можно». У 1-й палове 19 ст. былі атрыманыя металы платынавай групы, шчолачныя і шчолачназямельныя металы, адкрыты невядомыя металы пры хімічным аналізе мінералаў. В 1860—63 метадам спектральнага аналізу былі адкрыты Cs, Rb, Tl, In. У другой палове 20 ст. былі штучна атрыманыя радыеактыўныя металы, у прыватнасці, трансураніды.

Металы і іх сплавы шырока выкарыстоўваюцца ў розных галінах вытворчасці, перш за ўсё як канструкцыйны матэрыял.

Зноскі

  1. Поваренных А. С. Твердость минералов. — АН УССР, 1963. — С. 197-208. — 304 с.