Неарганічная хімія

З Вікіпедыі, свабоднай энцыклапедыі

Неарганічная хімія — раздзел хіміі, які вывучае хімічныя элементы і ўтвораныя імі простыя і складаныя рэчывы, акрамя арганічных злучэнняў.

Неарганічная хімія займаецца вырашэннем наступных задач:

  • даследаванне будовы, саставу і ўласцівасцей простых рэчываў і хімічных злучэнняў
  • распрацоўка і навуковае абгрунтаванне спосабаў стварэння новых матэрыялаў з патрэбнымі для сучаснай тэхнікі ўласцівасцямі.[1]

Тэарэтычнай асновай неарганічнай хіміі з’яўляецца перыядычны закон і заснаваная на ім перыядычная сістэма Д. І. Мендзялеева.

Неарганічная хімія з’яўляецца навуковай базай хімічнай вытворчасці неарганічных рэчываў (солей, кіслот, шчолачаў і інш.), неабходных для развіцця цяжкай індустрыі і сельскай гаспадаркі.[2]

Класіфікацыя[правіць | правіць зыходнік]

Па аб’ектах, якія вывучаюцца, неарганічную хімію падзяляюць на:

  • хімію асобных элементаў
  • хімію груп элементаў перыядычнай сістэмы (напрыклад, хімія шчолачных металаў, галагенаў, шчолачназямельных элементаў, халькагенаў і інш.)
  • хімію пэўных злучэнняў некаторых элементаў (напрыклад, хімія сілікатаў, пераксідных злучэнняў і інш.)
  • хімію блізкіх па ўласцівасцях і галінах выкарыстання рэчываў (напрыклад, хімія тугаплаўкіх рэчываў, інтэрметалідаў, паўправаднікоў, высакародных металаў, неарганічных палімераў і інш.)
  • хімію элементаў, аб’яднаных у групы па адзнаках, якія склаліся гістарычна (напрыклад, хімія рэдкіх элементаў).

Сярод самастойных раздзелаў неарганічнай хіміі — каардынацыйная хімія, ці хімія каардынацыйных злучэнняў. Звычайна таксама адасабляюць хімію пераходных элементаў.[1]

Гісторыя[правіць | правіць зыходнік]

Гісторыя неарганічнай хіміі пачынаецца з глыбокай старажытнасці. Першыя звесткі пра золата, серабро, медзь, волава і іншыя металы адносяцца да 3 ст. да н.э.

У сярэднія вякі, калі панавала алхімія, былі адкрыты мыш'як, сурма, фосфар, цынк, вісмут, атрыманы некаторыя кіслоты (серная, саляная, азотная), некаторыя солі і іншыя неарганічныя злучэнні.

Як самастойная навука неарганічная хімія пачала развівацца ў 1819 стагоддзях, калі былі ўстаноўлены асноўныя законы хімічнай атамістыкі: законы захавання масы пры хімічных рэакцыях (М. В. Ламаносаў, 1756; А. Лавуазье, 1770), пастаянства саставу (Ж. Пруст, 18011807), закон кратных адносін (Дж. Дальтан, 1803).

У пачатку 19 стагоддзя Ё. Я. Берцэліус апублікаваў табліцу атамных мас 45 вядомых элементаў, А. Авагадра і Ж. Л. Гей-Люсак адкрылі газавыя законы. П. Л. Дзюлонг і А. Пці вынайшлі правіла, што звязвае цеплаёмістасць з колькасцю атамаў у злучэнні. Г. І. Гес адкрыў закон пастаянства колькасці цеплаты. Узнікла атамна-малекулярная тэорыя. У 1807 годзе Г. Дэві ажыццявіў электроліз гідраксідаў натрыю і калію і ўвёў у практыку новы метад атрымання простых рэчываў. У 1834 годзе М. Фарадэй апублікаваў асноўныя законы электрахіміі.

Наступны этап у развіцці неарганічнай хіміі звязаны з адкрыццём перыядычнага закону і перыядыячнай сістэмы элементаў Мендзялеева (1869), а таксама з дасягненнямі фізікі, якія дазволілі даць перыядычнаму закону фізічнае абгрунтаванне, заснаванае на тэорыі будовы атама.

У пачатку 20 стагоддзя прапанаваны першыя электронныя тэорыі валентасці (В. Косель, 1915; Г. Льюіс, 1916), распрацаваны асновы каардынацыйнай хіміі (Л. А. Чугаеў, І. І. Чарнякоў). Даследаванне прыроднай радыеактыўнасці прывяло да адкрыцця прыродных радыеактыўных элементаў і ўзнікнення радыяхіміі. Адкрыццё ў 1934 годзе штучнай радыеактыўнасці дазволіла атрымаць новыя хімічныя элементы і ізатопы, запоўніць прабелы ў перыядычнай сістэме элементаў і дабудаваць яе трансуранавымі элементамі.

Развіццё ядзернай энергетыкі, рэактыўнай тэхнікі, электронікі спрыяла стварэнню новых сінтэтычных матэрыялаў і тэхналогій з выкарыстаннем дасягненняў у галіне тэхнікі высокіх тэмператур і ціску, глыбокага вакууму, распрацоўкі метадаў атрымання матэрыялаў высокай чысціні.

Важная задача сучаснай неарганічнай хіміі — даследаванне хімічных уласцівасцей і спосабаў атрымання рэдкіх металаў (ніобій, тытан, малібдэн, тантал) і сплаваў на іх аснове, вывучэнне неарганічных палімераў і сіталаў.

На Беларусі даследаванні па неарганічнай хіміі вядуцца ў Інстытуце агульнай і неарганічнай хіміі Нацыянальнай АН (сінтэз эмаляў, адсарбентаў, каталізатараў, керамічных матэрыялаў і мінеральных угнаенняў), Інстытуце фізікі цвёрдага цела і паўправаднікоў Нацыянальнай АН і БДУ (сінтэз звышцвёрдых і паўправадніковых матэрыялаў, сегнетаэлектрыкаў і ферытаў), Беларускім дзяржаўным тэхналагічным універсітэце (фосфарныя ўгнаенні, пераўскіты, ферыты), НДІ будматэрыялаў (пенашкло, пенабетон, вапна і інш.), Беларускім універсітэце інфарматыкі і радыёэлектронікі (паўправадніковыя злучэнні).[3]

Метады даследаванняў[правіць | правіць зыходнік]

Асноўныя метады даследаванняў грунтуюцца на аналізе (сукупнасць аперацый, скіраваных на вызначэнне якаснага і колькаснага саставу рэчыва) і сінтэзе (атрыманне складаных хімічных злучэнняў з больш простых ці з хімічных элементаў).

У неарганічнай хіміі выкарыстоўваюцца тэарэтычныя ўяўленні і метады фізікі, крышталяграфіі, крышталяхіміі, а таксама метады аналітычнай, фізічнай і калоіднай хіміі.[1]

Простыя рэчывы[правіць | правіць зыходнік]

Складаюцца з атамаў аднаго хімічнага элемента (з’яўляюцца формай яго існавання ў свабодным стане). У залежнасці ад таго, якая хімічная сувязь паміж атамамі, усе простыя рэчывы ў неарганічнай хіміі падзяляюцца на дзве асноўныя групы: металы і неметалы. Для першых характэрна, адпаведна, металічная сувязь, для другіх — кавалентная. Варта, зрэшты, заўважыць, што радыкальных і істотных адрозненняў адзін ад аднаго вышэйзгаданыя простыя рэчывы не маюць. Таксама вылучаюцца дзве групы, якія прымыкаюць да іх — металападобных і неметалападобных рэчываў. Існуе з’ява алатрапіі, якая складаецца ў магчымасці стварэння некалькіх тыпаў простых рэчываў з атамаў аднаго і таго ж элемента; кожны з такіх тыпаў называецца алатропнай мадыфікацыяй. Калі дадзеная з’ява абумоўлена розным малекулярным складам, то яна вызначаецца як алатропія складу; калі спосабам размяшчэння малекул і атамаў ў крышталях — тады як алатропія формы.

Металы[правіць | правіць зыходнік]

Металы (ад лац.: metallum — шахта, руднік) — група элементаў, якая валодае характэрнымі металічнымі ўласцівасцямі, такімі як высокія цепла- і электраправоднасць, станоўчы тэмпературны каэфіцыент супраціўлення, высокая пластычнасць і металічны бляск. З 118[4] хімічных элементаў, адкрытых на дадзены момант (з іх не ўсе афіцыйна прызнаныя), да металаў адносяць:

Такім чынам, да металаў належыць 96 элементаў з усіх адкрытых. У сілу асаблівасцяў металічнай атамнай сувязі (а менавіта — ненасычанасці і ненакіраванасці) металы характарызуюцца максімальна шчыльнымі каардынацыйнымі рашоткамі. Найбольш тыповыя для іх кубічная гранецэнтрырыванная, кубічная аб’ёмна цэнтраваная і гексагональная крышталічныя рашоткі. Акрамя таго, з-за энергетычнай блізкасці рашотак у многіх металаў выяўляецца полімарфізм.

Неметалы[правіць | правіць зыходнік]

Неметалы — хімічныя элементы з тыповымі неметалічнымі ўласцівасцямі, якія знаходзяцца ў правым верхнем вугле Перыядычнай сістэмы. У малекулярнай форме ў выглядзе простых рэчываў у прыродзе сустракаюцца азот, кісларод і сера. Часцей неметалы знаходзяцца ў хімічна звязаным выглядзе: гэта вада, мінералы, горныя пароды, розныя сілікаты, фасфаты, бараты. Па распаўсюджанасці ў зямной кары неметалы істотна адрозніваюцца. Найбольш распаўсюджанымі з’яўляюцца кісларод, крэмній, вадарод; найбольш рэдкімі — мыш'як, селен, ёд. Характэрнай асаблівасцю неметалаў з’яўляецца бо́льшы (у параўнанні з металамі) лік электронаў на знешнім энергетычным узроўні іх атамаў. Гэта вызначае іх бо́льшую здольнасць да далучэння дадатковых электронаў і праявы больш высокай акісляльнай актыўнасці, чым у металаў. Да неметалаў таксама адносяць вадарод і гелій.

Складаныя рэчывы[правіць | правіць зыходнік]

Існуюць розныя класіфікацыі складаных рэчываў. Так, паводле колькасці элементаў, якія ўваходзяць у склад рэчыва, адрозніваюцца бінарныя, трохэлеменныя злучэнні і г.д.

Вялікую частку складаных неарганічных рэчываў (гэта значыць, якія складаюцца з двух і больш хімічных элементаў) можна падзяліць на наступныя групы:

Таксама можна вылучыць наступныя групы неарганічных рэчываў: карбіды, нітрыды, гідрыды, інтэрметаліды і г. д., якія не ўкладваюцца ў прыведзеную вышэй класіфікацыю (больш падрабязна гл. Неарганічнае рэчыва).

Бінарныя злучэнні[правіць | правіць зыходнік]

Бінарнымі называюцца злучэнні, якія складаюцца з атамаў двух элементаў. Іх класіфікацыя таксама адбываецца на падставе тыпу хімічнай сувязі; вылучаюць злучэння іонныя, кавалентныя, металічныя, а таксама злучэнні, якія характарызуюцца змяшаным тыпам сувязі. Іх хімічныя ўласцівасці вар’іруюцца ў залежнасці ад хімічнай прыроды канкрэтных элементаў: злучэнні, у склад якіх уваходзяць металічныя элементы, характарызуюцца асноўнымі ўласцівасцямі, у той час як злучэння неметалічных элементаў праяўляюць кіслотныя ўласцівасці.

Трохэлементныя злучэнні[правіць | правіць зыходнік]

Трохэлементныя злучэнні — найбольш простыя па складзе злучэнні, якія ўтвараюцца пры ўзаемадзеянні, як правіла, істотна адрозніваюцца адзін ад аднаго па хімічнай прыродзе бінарных злучэнняў. З пункту гледжання хімічнай сувязі яны падзяляюцца на іонныя, кавалентныя і іонна-кавалентныя. У залежнасці ад устойлівасці іонаў іх знешняй сферы вар’іруецца ўстойлівасць аніёных комплексаў, якая, у сваю чаргу, уплывае на ўласцівасці злучэння і ступень яго падабенства да бінарнага.

Калі ж узаемадзейнічаюць злучэнні, якія мала адрозніваюцца адзін ад аднаго па хімічнай прыродзе, то ў выніку ўзнікаюць асаблівыя разнавіднасці рэчываў: змешаныя злучэнні, цвёрдыя растворы і эўтэктыкі. Першыя з пералічаных — гэта палімеры, якія з’яўляюцца прадуктам узаемадзеяння злучэнняў элементаў, аднолькава схільных да комплексаўтварэнню (напрыклад, аксід алюмінія і аксід магнію), другія ўтвараюцца ў тым выпадку, калі электрастаноўчыя элементы могуць утвараць падобныя структурныя адзінкі (гэта значыць не маюць прынцыповых адрозненняў у будове, памеры і ўстойлівасці), а трэція ўяўляюць сабой вынік узаемадзеяння злучэнняў элементаў, якія блізкія адзін аднаму хімічна, але адрозніваюцца па будове або памеры атамаў. У апошнім выпадку хімічнага ўзаемадзеяння, строга кажучы, не адбываецца наогул — узнікае механічны кангламерат крышталяў.

Аксіды[правіць | правіць зыходнік]

Аксід — бінарнае злучэнне хімічнага элемента з кіслародам ў ступені акіслення −2, у якім сам кісларод звязаны толькі з менш электраадмоўным элементам. Хімічны элемент кісларод па электраадмоўнасці займае другое месца пасля фтору, таму да аксідаў адносяцца амаль усе злучэння хімічных элементаў з кіслародам. Выключэннем з’яўляецца, напрыклад, дыфтарыд кіслароду OF2. Аксіды — вельмі распаўсюджаны тып злучэнняў, якія змяшчаюцца ў зямной кары і ва Сусвету наогул. Прыкладамі такіх злучэнняў з’яўляюцца іржа, вада, пясок, вуглякіслы газ, шэраг фарбавальнікаў. Аксідамі называецца клас мінералаў, якія ўяўляюць сабой злучэння металу з кіслародам.

Солі[правіць | правіць зыходнік]

Со́лі — клас хімічных злучэнняў, да якога адносяцца рэчывы, якія складаюцца з катыёнаў металу (або катыёнаў амонію ; вядомыя солі фасфонію або гідраксонію ) і аніёнаў кіслотнага астатку. Тыпы соляў:

  • Сярэднія (нармальныя) солі — усе атамы вадароду ў малекулах кіслаты замешчаныя на атамы металу, напрыклад, , .
  • Кіслыя солі — атамы вадароду ў кіслаце часткова замешчаныя атамамі металу. Яны атрымліваюцца пры нейтралізацыі асновы лішкам кіслаты, напрыклад, , .
  • Асноўныя солі — гідраксагрупы асновы (OH) часткова замешчаны кіслотнымі астаткамі, напрыклад. .
  • Падвойныя солі — у іх складзе прысутнічае два розныя катыёны, атрымліваюцца крышталізацыяй са змяшанага раствора соляў з рознымі катыёнамі, але аднолькавымі аніёнамі, напрыклад, .
  • Змяшаныя солі — у іх складзе прысутнічае два розныя аніёны, напрыклад, .
  • Гідратныя солі (крышталегідраты) — у іх склад уваходзяць малекулы крышталізацыйнай вады, напрыклад, .
  • Комплексныя солі — у іх склад уваходзіць комплексны катыён або комплексны аніён, напрыклад, , .

Асаблівую групу складаюць солі арганічных кіслот, уласцівасці якіх значна адрозніваюцца ад уласцівасцяў мінеральных соляў. Некаторыя з іх можна аднесці да асаблівага класа арганічных соляў, так званых іонных вадкасцяў або па-іншаму «вадкіх соляў», арганічных соляў з тэмпературай плаўлення ніжэй за 100 °C.

Асновы[правіць | правіць зыходнік]

Асно́вы — клас хімічных злучэнняў, складаныя рэчывы, якія складаюцца з атамаў металу або іона амонію і гідраксагрупы (-OH). У водным растворы дысацыююць са стварэннем катыёнаў і аніёнаў ОН. Назва асновы звычайна складаецца з двух слоў: «гідраксід металу / амонія». Асновы, якія добра раствараюцца ў вадзе, называюцца шчолачамі.

Кіслоты[правіць | правіць зыходнік]

Кісло́ты — складаныя рэчывы, у склад якіх звычайна ўваходзяць атамы вадароду, здольныя замяшчацца на атамы металаў, і кіслотны астатак. Водныя растворы кіслот маюць кіслы смак, валодаюць раздражняльным дзеяннем, здольныя мяняць афарбоўку індыкатараў, адрозніваюцца шэрагам агульных хімічных уласцівасцяў.

Карбіды[правіць | правіць зыходнік]

Карбі́ды — злучэнні металаў і неметалаў з вугляродам. Традыцыйна да карбідаў адносяцца злучэнні, у якіх вуглярод мае бо́льшую электраадмоўнасць, чым другі элемент (такім чынам са складу карбідаў выключаюцца такія злучэння вугляроду, як аксіды, галагеніды і інш.). Карбіды — тугаплаўкія цвёрдыя рэчывы: карбіду бору і крэмнію4С и SiC), тытана, вальфраму, цырконію (TiC, WC і ZrC адпаведна) валодаюць высокай цвёрдасцю, гарачаўстойлівасцю, хімічнай інэртнасцю.

Нітрыды[правіць | правіць зыходнік]

Нітры́ды — злучэнні азоту з менш электраадмоўнымі элементамі, напрыклад, з металамі (AlN;TiNx;Na3N;Ca3N2;Zn3N2; і інш.) і з шэрагам неметалаў (NH3, BN, Si3N4). Злучэнні азоту з металамі часцей за ўсё з’яўляюцца тугаплаўкімі і устойлівымі пры высокіх тэмпературах рэчывамі, напрыклад, эльбор. Нітрыдныя пакрыцці надаюць вырабам цвёрдасць, каразійную стойкасць; знаходзяць прымяненне ў энергетыцы, касмічнай тэхніцы.

Гідрыды[правіць | правіць зыходнік]

Гідры́ды — злучэнні вадароду з металамі і з неметаламі, якія маюць меншую электраадмоўнасць, чым вадарод. Часам да гідрыдаў адносяць злучэнні ўсіх элементаў з вадародам. Гідрыды дзеляцца на тры тыпы ў залежнасці ад характару сувязі ў злучэнні: іонныя гідрыды, металічныя гідрыды і кавалентныя гідрыды.[5][6]

Інтэрметаліды[правіць | правіць зыходнік]

Металічныя злучэнні, або інтэрметаліды — адзін з чатырох базавых варыянтаў узаемадзеяння паміж металамі (астатнія тры — поўная адсутнасць якога-небудзь уплыву, узаемнае растварэнне ў вадкім стане і ўтварэнне эўтэктыкі ў цвёрдым, а таксама фарміраванне як вадкіх, так і цвёрдых раствораў любога складу). У адрозненне ад, напрыклад, цвёрдых раствораў інтэрметаліды характарызуюцца складанай крышталічнай структурай, непадобнай да структуры зыходных рэчываў; аналагічным чынам у іх могуць з’яўляцца фізічныя або хімічныя асаблівасці, не ўласцівыя іх складальнікам у чыстым выглядзе. У цэлым для інтэрметалідаў характэрна шырокая разнастайнасць крышталічных структур і тыпаў хімічнай сувязі, што, у сваю чаргу, з’яўляецца прычынай шырокага спектру іх магчымых фізічных і хімічных уласцівасцяў.

Інтэрметаліды, як і іншыя хімічныя злучэнні, маюць фіксаваныя суадносіны паміж кампанентамі. Інтэрметаліды валодаюць, як правіла, высокай цвёрдасцю і высокай хімічнай устойлівасцю. Вельмі часта інтэрметаліды маюць больш высокую тэмпературу плаўлення, чым зыходныя металы. Амаль усе інтэрметаліды далікатныя, бо сувязь паміж атамамі ў рашотцы становіцца кавалентнай або іоннай (напрыклад, у аўрыдзе цэзія CsAu), а не металічнай. Некаторыя з іх маюць паўправадніковыя ўласцівасці, прычым, чым бліжэй да стэхіаметрыі суадносіны элементаў, тым вышэй электрычнае супраціўленне. Нікелід тытана, вядомы пад маркай «нітынол», валодае памяццю формы — пасля загартоўкі выраб можа быць дэфармавана механічна, але пры невялікім нагрэве прыме зыходную форму.

Нестэхіяметрычныя злучэнні[правіць | правіць зыходнік]

Да пачатку XX стагоддзя аксіёматычным лічылася становішча аб пастаянстве саставу тых ці іншых рэчываў, упершыню выказанае і сфармуляванае стагоддзем раней. Разглядаемае сцвярджэнне было аналагічным чынам пайменавана як закон пастаянства саставу, а адпаведная ўласцівасць рэчываў — як стэхіяметрычнасць. Даследаванні, праведзеныя вучоным М. С. Курнаковым паказалі, што існуюць таксама і злучэнні пераменнага саставу, гэта значыць нестэхіяметрычныя, і пры гэтым яны характарызуюцца даволі высокай ступенню распаўсюджанасці ў прыродзе. М. С. Курнакоў прапанаваў таксама называць злучэнні пастаяннага саставу дальтанідамі, а пераменнага — берталідамі.

У той ці іншай ступені пераменны склад характэрны для тых рэчываў, у якіх назіраецца або атамная, або іонная будова. У такім выпадку ў крышталі могуць узнікаць рознага роду дэфекты — або недахоп атамаў у пэўных вузлах, або іх лішак у прамежках паміж вузламі. Напрыклад, відавочная нестэхіяметрычнасць характэрна для аксіду і сульфату жалеза (II). Існуюць пэўныя межы, унутры якіх адхіленні ад стэхіяметрычнага саставу лічацца дапушчальнымі; адпаведны дыяпазон называецца вобласцю гамагеннасці. У сваю чаргу, рэчывы з малекулярнай будовай маюць пастаянны састаў; варта, зрэшты, заўважыць, што да 95 % неарганічных рэчываў такой будовы не маюць і ў сілу гэтага з’яўляюцца нестэхіяметрычнымі. Працяглая перавага ўяўленняў аб пастаянстве саставу тлумачыцца тым, што часта змены аказваюцца недастаткова істотнымі для іх выяўлення ў ходзе хімічнага аналізу.

Крыніцы[правіць | правіць зыходнік]

Літаратура[правіць | правіць зыходнік]

Спасылкі[правіць | правіць зыходнік]